题意:有一个迷宫,从起点出发,问能不能在t时刻恰好到达终点。
思路:这个题目用dfs做一定要注意剪枝,不然超时,大概就是如果有当前点到终点的最短路加上已耗费的时间大于t了,就无法达成了,如果最短路与剩余时间的奇偶性不同的话,也无法到达该点了。因为如果要多走出去一步的话,也必然要花费一步走回来,所以如果奇偶性不同的话就无法到达了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define MAXN 10
using namespace std;
int vis[MAXN][MAXN];
char MAP[MAXN][MAXN];
int n, m, t;
bool flag;
int gx, gy;
int ans;
int xx[] = {1, 0, -1, 0};
int yy[] = {0, 1, 0, -1};
void dfs(int x, int y, int cnt) {
if (flag)
return;
if (vis[x][y])
return;
if ((abs(gx - x) + abs(gy - y)) % 2 != abs(t - cnt) % 2)
return;
if ((abs(gx - x) + abs(gy - y)) + cnt > t)
return;
if (MAP[x][y] == 'D' && cnt == t) {
flag = true;
return;
}
for (int i = 0; i < 4; ++i) {
vis[x][y] = 1;
int nx = x + xx[i];
int ny = y + yy[i];
if (nx >= 0 && ny >= 0 && nx < n && ny < m && MAP[nx][ny] != 'X')
dfs(nx, ny, cnt + 1);
vis[x][y] = 0;
}
}
int main() {
while (scanf("%d%d%d", &n,&m, &t)) {
if (n == 0 && m == 0 && t == 0)
break;
for (int i = 0; i < n; ++i) {
scanf("%s", MAP[i]);
}
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
if (MAP[i][j] == 'D'){
gx = i;
gy = j;
}
memset(vis, 0, sizeof(vis));
ans = 0, flag = false;
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) {
if (MAP[i][j] == 'S') {
dfs(i, j, 0);
break;
}
}
if (flag)
cout << "YES\n";
else
cout << "NO\n";
}
return 0;
}