GCD - Extreme (II) UVA - 11426

题目传送门

题意:这个题目的题意十分的简单,就是给你一个数学公式,让你对这个数学式子进行计算。

思路:显然按照题目里的给出的算法进行计算是会超时的,但是比赛的时候并没有想出来什么好的办法解决了这个题目,赛后才知道这个题目要用欧拉函数进行计算,其实这个题目如果你把这个题目的思想搞明白还是比较简单的
设f(n) = gcd(1, n) + gcd(2, n) + … + gcd(n - 1, n).这样的话,就可以得到递推式S(n) = f(2) + f(3) + … + f(n) ==> S(n) = S(n - 1) + f(n);.
这样问题变成如何求f(n).设g(n, i),表示满足gcd(x, n) = i的个数,这样f(n) = sum{i * g(n, i)}. 那么问题又转化为怎么求g(n, i),gcd(x, n) = i满足的条件为gcd(x / i, n / i) = 1,因此只要求出欧拉函数phi(n / i),就可以得到与x / i互质的个数,从而求出gcd(x , n) = i的个数,这样整体就可以求解了。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>

#define MAXN 4000010
#define INF 10000000
#define MOD 1000000007
#define LL long long

using namespace std;

LL s[MAXN], f[MAXN], phi[MAXN];

void phi_table() {
    phi[1] = 1;
    for (int i = 2; i < MAXN; i++) {
        if (!phi[i]) {
            phi[i] = i - 1;
            for (int j = i * 2; j < MAXN; j += i) {
                if (!phi[j])
                    phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
            }
        }
    }
}

int main() {
    memset(f, 0, sizeof(f));
    memset(phi, 0, sizeof(phi));
    phi_table();
    for (int i = 1; i < MAXN; ++i) {
        for (int n = i * 2; n < MAXN; n += i) {
            f[n] += i * phi[n / i];
        }
    }
    s[2] = f[2];
    for (int n = 3; n < MAXN; ++n)
        s[n] = s[n - 1] + f[n];
    int n;
    while (cin >> n && n) {
        cout << s[n] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值