题意:有10个任务,5个管道,每个任务需要占用不同时间的管道,给出任务所占用管道的时间,求最短需要多少时间。
思路:这个题利用八皇后的思想,判断出当前状态下所有能延伸到的点然后用DFS搜索回溯就可以了。有两个要注意的点
1.要把当前能延伸到的点先记录下来防止超时
2.如果当前花费的时间加上余下的最优解仍然超过当前的最小话费就退出。
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <vector>
#define MAXN 30
#define MAXE 210
#define INF 10000000
#define MOD 1000000007
#define LL long long
#define pi acos(-1.0)
using namespace std;
string str[MAXN];
int times[MAXN];
int jump[MAXN];
bool check[MAXN];
int ans;
int n;
void prepare() {
memset(check, false, sizeof(check));
check[n] = true;
for (int i = 0; i < n; ++i) {
bool flag = true;
for (int j = i; j < n; ++j) {
for (int k = 0; k < 5; ++k) {
if (str[k][j] == 'X' && str[k][j - i] == 'X') {
flag = false;
break;
}
}
if (!flag)
break;
}
if (flag)
check[i] = true;
}
}
void dfs(int pos, int cur) {
if (pos + n > ans)
return;
if (pos + times[1] * (10 - cur) + n > ans)
return;
if (cur == 10) {
ans = min(ans, pos + n);
return;
}
bool F = false;
for (int i = 0; i <= n; ++i) {
bool flag = true;
if (!check[i])
continue;
for (int j = 0; j < cur - 1; ++j) {
if (i + times[cur - 1] >= times[j] + n)
continue;
else {
if (!check[i + times[cur - 1] - times[j]]) {
flag = false;
break;
}
}
}
if (flag) {
F = true;
times[cur] = i + times[cur - 1];
dfs(i + times[cur - 1], cur + 1);
}
}
if (!F)
return;
}
int main() {
std::ios::sync_with_stdio(false);
while (cin >> n && n) {
for (int i = 0; i < 5; ++i)
cin >> str[i];
ans = 10 * n;
prepare();
memset(times, 0, sizeof(times));
dfs(0, 1);
cout << ans << endl;
}
return 0;
}
/*
7
X...XX.
.X.....
..X....
...X...
......X
0
*/