2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。
自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921... 其中粗体标出的 10 位数就是答案。
本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。
输入格式:
输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。
输出格式:
在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404
。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。
输入样例 1:
20 5
23654987725541023819
结尾无空行
输出样例 1:
49877
结尾无空行
输入样例 2:
10 3
2468001680
结尾无空行
输出样例 2:
404
结尾无空行
#include<stdio.h>
#include<string.h>
int main(){
int n,m;
scanf("%d%d",&n,&m);
char a[n];
getchar();
gets(a);
int len=strlen(a),i,j,temp,k,flag,flag1=0;
for(i=0;i<=len-m;i++)//确实
{
temp=0;
flag=0;//是素数
for(j=0;j<m;j++){//合成数字
temp=temp*10+(a[i+j]-'0');
}
for(k=2;k<=sqrt(temp);k++){//判断是否是素数
if(temp%k==0)flag=1;
}
if(temp==1||temp==0)flag=1;//0和1不是素数别忘了写 测试点1
if(flag==0){//是素数
int count=0,temp1=temp;
while(temp1!=0){//记录实际位数
temp1/=10;
count++;
}
for(i=0;i<m-count;i++)//前面补0
printf("0");
printf("%d",temp);
return 0;
}
}
printf("404");
return 0;}