Leetcode 77. Combinations

本文介绍了三种求解组合数C(n,k)的有效方法,包括利用递归规律减少计算量的方法、动态规划方法以及回溯算法。针对不同情况,如k接近n/2时的优化策略也进行了探讨。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
方法1: 我自己的方法,我觉得应该也能算dp。就是找规律,找C(n,k)和C(n,k-1)的关系。这道题目的时间空间复杂我就不分析了,脑瓜疼。然后这个方法可以有一个小优化,就是C(n,k) = C(n,n-k)有很大的关系,所以每当k > n/2是,我们就可以套用这个公式减轻运算量。

class Solution {
    public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> res = new ArrayList<>();
        
        if(k == 0){
            res.add(new ArrayList<>());
            return res;
        }
        if(k == 1){
            for(int i = 1; i <= n; i++){
                List<Integer> curr = new ArrayList<>();
                curr.add(i);
                res.add(curr);
            }
            return res;
        }
        
        if(k > n / 2){
            List<List<Integer>> list = combine(n, n-k);
            for(List<Integer> l : list){
                List<Integer> hh = new ArrayList<>();
                Set<Integer> set = new HashSet<>(l);
                for(int i = 1; i <= n; i++){
                    if(!set.contains(i)) hh.add(i);
                }
                res.add(hh);
            }
            return res;
        }
       
        
        List<List<Integer>> list = combine(n, k-1);
        for(List<Integer> l : list){
            int last = l.get(l.size()-1);
            List<Integer> temp = new ArrayList<>(l);
            for(int i = last + 1; i <= n; i++){
                temp.add(i);
                res.add(temp);
                temp = new ArrayList<>(l);
            }
        }
        return res;
    }
}

方法2: dp。这是discussion部分一个比较好的答案。附上链接

public class Solution {
    public List<List<Integer>> combine(int n, int k) {
        if (k == n || k == 0) {
            List<Integer> row = new LinkedList<>();
            for (int i = 1; i <= k; ++i) {
                row.add(i);
            }
            return new LinkedList<>(Arrays.asList(row));
        }
        List<List<Integer>> result = this.combine(n - 1, k - 1);
        result.forEach(e -> e.add(n));
        result.addAll(this.combine(n - 1, k));
        return result;
    }
}

方法3: lc官方解答1,backtracking。这仿佛和78题一样,我怀疑这个backtracking是一个公式,对于这类题型来说。

class Solution {
  List<List<Integer>> output = new LinkedList();
  int n;
  int k;

  public void backtrack(int first, LinkedList<Integer> curr) {
    // if the combination is done
    if (curr.size() == k)
      output.add(new LinkedList(curr));

    for (int i = first; i < n + 1; ++i) {
      // add i into the current combination
      curr.add(i);
      // use next integers to complete the combination
      backtrack(i + 1, curr);
      // backtrack
      curr.removeLast();
    }
  }

  public List<List<Integer>> combine(int n, int k) {
    this.n = n;
    this.k = k;
    backtrack(1, new LinkedList<Integer>());
    return output;
  }
}

总结:

基于STM32设计的数字示波器全套资料(原理图、PCB图、源代码) 硬件平台: 主控器:STM32F103ZET6 64K RAM 512K ROM 屏幕器:SSD1963 分辨率:480*272 16位色 触摸屏:TSC2046 模拟电路: OP-TL084 OP-U741 SW-CD4051 CMP-LM311 PWR-LM7805 -LM7905 -MC34063 -AMS1117-3.3 DRT-ULN2003 6.继电器:信号继电器 7.电源:DC +12V 软件平台: 开发环境:RealView MDK-ARM uVision4.10 C编译器:ARMCC ASM编译器:ARMASM 连机器:ARMLINK 实时内核:UC/OS-II 2.9实时操作系统 GUI内核:uC/GUI 3.9图形用户接口 底层驱动:各个外设驱动程序 数字示波器功能: 波形发生器:使用STM32一路DA实现正弦,三角波,方波,白噪声输出。 任意一种波形幅值在0-3.3V任意可调、频率在一定范围任意可调、方波占空比可调。调节选项可以通过触摸屏完成设置。 SD卡存储: SD卡波形存储输出,能够对当前屏幕截屏,以JPG格式存储在SD卡上。能够存储1S内的波形数据,可以随时调用查看。 数据传输:用C#编写上位机,通过串口完成对下位机的控制。(1)实现STOP/RUN功能(2)输出波形电压、时间参数(3)控制截屏(4)控制波形发生器(5)控制完成FFT(6)波形的存储和显示 图形接口: UCGUI 水平扫速: 250 ns*、500ns、1μs、5 μs、10μs、50μs、500 μs、5ms 、50ms 垂直电压灵敏度:10mV/div, 20mV/div, 50mV/div, 0.1V/div, 0,2V/div, 0.5V/div, 1V/div,2V/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值