Leetcode 77. Combinations

在这里插入图片描述
方法1: 我自己的方法,我觉得应该也能算dp。就是找规律,找C(n,k)和C(n,k-1)的关系。这道题目的时间空间复杂我就不分析了,脑瓜疼。然后这个方法可以有一个小优化,就是C(n,k) = C(n,n-k)有很大的关系,所以每当k > n/2是,我们就可以套用这个公式减轻运算量。

class Solution {
    public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> res = new ArrayList<>();
        
        if(k == 0){
            res.add(new ArrayList<>());
            return res;
        }
        if(k == 1){
            for(int i = 1; i <= n; i++){
                List<Integer> curr = new ArrayList<>();
                curr.add(i);
                res.add(curr);
            }
            return res;
        }
        
        if(k > n / 2){
            List<List<Integer>> list = combine(n, n-k);
            for(List<Integer> l : list){
                List<Integer> hh = new ArrayList<>();
                Set<Integer> set = new HashSet<>(l);
                for(int i = 1; i <= n; i++){
                    if(!set.contains(i)) hh.add(i);
                }
                res.add(hh);
            }
            return res;
        }
       
        
        List<List<Integer>> list = combine(n, k-1);
        for(List<Integer> l : list){
            int last = l.get(l.size()-1);
            List<Integer> temp = new ArrayList<>(l);
            for(int i = last + 1; i <= n; i++){
                temp.add(i);
                res.add(temp);
                temp = new ArrayList<>(l);
            }
        }
        return res;
    }
}

方法2: dp。这是discussion部分一个比较好的答案。附上链接

public class Solution {
    public List<List<Integer>> combine(int n, int k) {
        if (k == n || k == 0) {
            List<Integer> row = new LinkedList<>();
            for (int i = 1; i <= k; ++i) {
                row.add(i);
            }
            return new LinkedList<>(Arrays.asList(row));
        }
        List<List<Integer>> result = this.combine(n - 1, k - 1);
        result.forEach(e -> e.add(n));
        result.addAll(this.combine(n - 1, k));
        return result;
    }
}

方法3: lc官方解答1,backtracking。这仿佛和78题一样,我怀疑这个backtracking是一个公式,对于这类题型来说。

class Solution {
  List<List<Integer>> output = new LinkedList();
  int n;
  int k;

  public void backtrack(int first, LinkedList<Integer> curr) {
    // if the combination is done
    if (curr.size() == k)
      output.add(new LinkedList(curr));

    for (int i = first; i < n + 1; ++i) {
      // add i into the current combination
      curr.add(i);
      // use next integers to complete the combination
      backtrack(i + 1, curr);
      // backtrack
      curr.removeLast();
    }
  }

  public List<List<Integer>> combine(int n, int k) {
    this.n = n;
    this.k = k;
    backtrack(1, new LinkedList<Integer>());
    return output;
  }
}

总结:

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页