机器学习模型转ONNX例子

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
import numpy
import onnxruntime as rt

def build_model(X_train, y_train):
    clr = LogisticRegression()
    clr.fit(X_train, y_train)
    return clr

def convert_model(clr):
    initial_type = [('float_input', FloatTensorType([None, 4]))]
    onx = convert_sklearn(clr, initial_types=initial_type)
    with open("logreg_iris.onnx", "wb") as f:
        f.write(onx.SerializeToString())

def run_model():
    sess = rt.InferenceSession(
        "logreg_iris.onnx", providers=rt.get_available_providers()) # ['CUDAExecutionProvider', 'CPUExecutionProvider']
    input_name = sess.get_inputs()[0].name
    label_name = sess.get_outputs()[0].name
    pred_onx = sess.run(
        [label_name], {input_name: X_test.astype(numpy.float32)})[0]
    print(pred_onx)

if __name__ == '__main__':
    iris = load_iris()
    X, y = iris.data, iris.target
    X_train, X_test, y_train, y_test = train_test_split(X, y)
    clr = build_model(X_train, y_train)
    convert_model(clr)
    run_model()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨主任o_o

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值