背包问题

一 01背包问题


问题描述:

       有n件物品,每件物品的重量为w[i], 价值为c[i],现有一个容量为V的背包,问如选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都只有一件。


dp[i][v]表示前i件物品(1<=i<=n,0<=v<=V)恰好装入容量为v的背包所能获得 的最大价值,怎么求解dp[i][v]呢?

考虑对第i件物品的选择策略,有两种策略:

(1)  不放第 i 件物品,那么问题转化为前 i-1 件物品恰好装入 容量为 v的背包所能获得的最大价值 ,也即 dp[i-1][v].

(2) 放第 i 件物品,那么问题转化为前 i-1 件物品恰好装入容量为 v-w[i] 的背包中恰好获得的最大价值,也即 dp[i-1][v-w[i] ]+c[i].   由于只有只有这两种策略,且要求获得最大价值,因此状态转移方程为;

                       dp[i][v]=max{dp[i-1][v], dp[i-1][ v-w[i] ]+c[i] }

                                      (1<=i<=n ,w[i]<=v<=V)


注意到dp[i][v] 只与之前的状态 dp[i-1][] 有关,所以可以枚举 i 从1到 n ,v 从0  到 V,通过边界 dp[0][v]=0;(即0件物品放入任何容量的背包中都为 0) 就可以把整个dp数组递推出来。而由于dp[i][v]表示的恰好为v的情况,所以需要枚举dp[n][v],取其最大值才是最后的结果。

代码如下;

for(int i=1;i<=n;i++)
    for(int v=w[i];v<=V;v++)
{
    dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]);
}

状态转移方程的优化:

               dp[v]=max( dp[v],dp[v-w[i]]+c[i] )

                        (1<=i<=n,  w[i]<=v<=V)

其实时间复杂度没有优化,优化的是空间复杂度。代码如下:

for(int i=1;i<=n;i++)
    for(int v=V;v>=w[i];v--)
{
    dp[v]=max(dp[v],dp[v-w[i]]+c[i]);
}


完整的求解01背包问题的代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=100;
const int maxv=1000;
int w[maxn],c[maxn],dp[maxv];
int main()
{
    int n,V;
    scanf("%d%d",&n,&V);
    for(int i=1;i<=n;i++)
        scanf("%d",&w[i]);
    for(int i=1;i<=n;i++)
        scanf("%d",&c[i]);

    for(int v=0;v<=V;v++)///边界
        dp[v]=0;

    for(int i=1;i<=n;i++)///状态转移方程
        for(int v=V;v>=w[i];v--)
    {
        dp[v]=max(dp[v],dp[v-w[i]]+c[i]);
    }

    int Max=0;
    for(int v=0;v<=V;v++)
        if(dp[v]>Max)
    {
        Max=dp[v];
    }
    printf("%d\n",Max);
    return 0;
}



二 完全背包问题


问题描述:

       有n种物品,每种物品的重量为w[i] ,价值为c[i] .现有一个容量为 V 的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每件物品有无穷件。


同样令dp[i][v] 表示前 i 件物品的恰好放入容量为 v 的背包中能获得的最大价值

和 01 背包一样,完全背包有两种策略,但是也有些不同点。对第 i 件物品来说:

(1) 不放第 i 件物品,那么dp[i][v]=dp[i-1][v], 这步跟01背包是一样的

(2) 放第 i 件物品。这里和01 背包的处理是不一样的,因为 01 背包的每个物品都只能选择一个,因此选择放第 i 件物品就意味着必须转移到 dp[i-1][v-w[i]] 这个状态;但是完全背包不同,完全背包选择放第 i 件物品后转移到dp[i][v-w[i]] , 这是因为每种物品可以放任意件(注意有容量的限制,因此还是有限的),放了第 i 件物品后还可以继续放第i 件物品,知道二维的 v-w[i] 无法保持大于等于0 为止

      由上面的分析写出状态转移方程:

                                                dp[i][v]=max( dp[i-1][v],dp[i][v-w[i]]+c[i] )

                                                             (1<=i<=n, w[i]<=v<=V)

边界: dp[0][v]=0;


一维形式:     dp[v]=max{dp[v], dp[v-w[i]]+c[i] }

一维形式和 01 背包完全相同,唯一的区别在于这里 v 的枚举顺序为 正向枚举,代码如下:

for(int i=1;i<=n;i++)
    for(int v=w[i];v<=V;v++)
{
    dp[v]=max(dp[v],dp[v-w[i]]+c[i]);
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值