题意:从N个数里选出三个数,问两两互质或不互质的方案数。
范围: N<=10W,每个数<=10W
解法:转换题意为求一对互质,另一对不互质的方案数,最后总数减去求得方案数即答案,每一个数的贡献是 与其互质的数乘上不互质的数,最后累加除以2即可。
求互质的数可以用容斥求,因为每个数最多含有6个不同的素数,所以复杂度是2的6次。
由于比较傻,用了根号N*N的复杂度来预处理序列中每个数的约数,900MS卡过,实际上可以用类似N*logN素数筛的方法进行预处理存到vector里,最后访问vector就好了。
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<iostream>
#include<stdlib.h>
#include<set>
#include<map>
#include<queue>
#include<vector>
#include<bitset>
#pragma comment(linker, "/STACK:1024000000,1024000000")
template <class T>
bool scanff(T &ret){ //Faster Input
char c; int sgn; T bit=0.1;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
if(c==' '||c=='\n'){ ret*=sgn; return 1; }
while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;
ret*=sgn;
return 1;
}
#define inf 1073741823
#define llinf 4611686018427387903LL
#define PI acos(-1.0)
#define lth (th<<1)
#define rth (th<<1|1)
#define rep(i,a,b) for(int i=int(a);i<=int(b);i++)
#define drep(i,a,b) for(int i=int(a);i>=int(b);i--)
#define gson(i,root) for(int i=ptx[root];~i;i=ed[i].next)
#define tdata int testnum;scanff(testnum);for(int cas=1;cas<=testnum;cas++)
#define mem(x,val) memset(x,val,sizeof(x))
#define mkp(a,b) make_pair(a,b)
#define findx(x) lower_bound(b+1,b+1+bn,x)-b
#define pb(x) push_back(x)
using namespace std;
#define NN 100100
typedef long long ll;
int pn,p[NN];
bool vis[NN];
int cot[NN],n,a[NN];
vector<int> d[NN];
void getvet(int x){
int temp=x;
int k=sqrt(x);
rep(i,1,pn){
if(k<p[i])break;
if(x%p[i]==0){
d[temp].pb(p[i]);
while(x%p[i]==0)x/=p[i];
}
}
if(x>1)d[temp].pb(x);
}
void init(){
rep(i,2,100000){
if(!vis[i])p[++pn]=i;
for(int j=1;j<=pn &&p[j]*i<=100000;j++){
vis[p[j]*i]=1;
if(i%p[j]==0)break;
}
}
rep(i,1,100000)d[i].clear();
rep(i,1,100000)getvet(i);
}
void getcot(int x){
int k=sqrt(x);
if(k*k==x)cot[k]++,k--;
rep(i,1,k){
if(x%i==0){
cot[i]++;
cot[x/i]++;
}
}
}
int sum[NN];
int c[111],len;
int ans;
void dfs(int x,int k,int sum){
if(k>0){
//printf("%d %d\n",sum,cot[sum]);
if(k&1)ans+=cot[sum];
else ans-=cot[sum];
}
rep(i,x+1,len){
dfs(i,k+1,sum*c[i]);
}
}
void getp(int x){
len=d[x].size();
rep(i,0,len-1)c[i+1]=d[x][i];
ans=0;
dfs(0,0,1);
sum[x]=ans-1;
if(x==1)sum[x]=n-1;
// printf("%d %d\n",x,sum[x]);
}
int main(){
init();
tdata{
mem(cot,0);
scanff(n);
rep(i,1,n)scanff(a[i]);
rep(i,1,n)getcot(a[i]);
rep(i,1,n)getp(a[i]);
ll ans=(ll(n)*ll(n-1)*ll(n-2))/2LL/3LL;
ll s1=0;
rep(i,1,n){
s1+=ll(sum[a[i]])*ll(n-1-sum[a[i]]);
}
s1/=2;
ans-=s1;
printf("%lld\n",ans);
}
return 0;
}