HDU 5072 Coprime [数学]

题意:从N个数里选出三个数,问两两互质或不互质的方案数。

范围: N<=10W,每个数<=10W

解法:转换题意为求一对互质,另一对不互质的方案数,最后总数减去求得方案数即答案,每一个数的贡献是 与其互质的数乘上不互质的数,最后累加除以2即可。

求互质的数可以用容斥求,因为每个数最多含有6个不同的素数,所以复杂度是2的6次。

由于比较傻,用了根号N*N的复杂度来预处理序列中每个数的约数,900MS卡过,实际上可以用类似N*logN素数筛的方法进行预处理存到vector里,最后访问vector就好了。


代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<iostream>
#include<stdlib.h>
#include<set>
#include<map>
#include<queue>
#include<vector>
#include<bitset>
#pragma comment(linker, "/STACK:1024000000,1024000000")
template <class T>
bool scanff(T &ret){ //Faster Input
    char c; int sgn; T bit=0.1;
    if(c=getchar(),c==EOF) return 0;
    while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar();
    sgn=(c=='-')?-1:1;
    ret=(c=='-')?0:(c-'0');
    while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
    if(c==' '||c=='\n'){ ret*=sgn; return 1; }
    while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10;
    ret*=sgn;
    return 1;
}
#define inf 1073741823
#define llinf 4611686018427387903LL
#define PI acos(-1.0)
#define lth (th<<1)
#define rth (th<<1|1)
#define rep(i,a,b) for(int i=int(a);i<=int(b);i++)
#define drep(i,a,b) for(int i=int(a);i>=int(b);i--)
#define gson(i,root) for(int i=ptx[root];~i;i=ed[i].next)
#define tdata int testnum;scanff(testnum);for(int cas=1;cas<=testnum;cas++)
#define mem(x,val) memset(x,val,sizeof(x))
#define mkp(a,b) make_pair(a,b)
#define findx(x) lower_bound(b+1,b+1+bn,x)-b
#define pb(x) push_back(x)
using namespace std;
#define NN 100100
typedef long long ll;

int pn,p[NN];
bool vis[NN];

int cot[NN],n,a[NN];
vector<int> d[NN];

void getvet(int x){
    int temp=x;
    int k=sqrt(x);
    rep(i,1,pn){
        if(k<p[i])break;
        if(x%p[i]==0){
            d[temp].pb(p[i]);
            while(x%p[i]==0)x/=p[i];
        }
    }
    if(x>1)d[temp].pb(x);
}

void init(){
    rep(i,2,100000){
        if(!vis[i])p[++pn]=i;
        for(int j=1;j<=pn &&p[j]*i<=100000;j++){
            vis[p[j]*i]=1;
            if(i%p[j]==0)break;
        }
    }
    rep(i,1,100000)d[i].clear();
    rep(i,1,100000)getvet(i);
}

void getcot(int x){
    int k=sqrt(x);
    if(k*k==x)cot[k]++,k--;
    rep(i,1,k){
        if(x%i==0){
            cot[i]++;
            cot[x/i]++;
        }
    }
}

int sum[NN];
int c[111],len;
int ans;
void dfs(int x,int k,int sum){
    if(k>0){
        //printf("%d %d\n",sum,cot[sum]);
        if(k&1)ans+=cot[sum];
        else ans-=cot[sum];
    }
    rep(i,x+1,len){
        dfs(i,k+1,sum*c[i]);
    }
}

void getp(int x){
    len=d[x].size();
    rep(i,0,len-1)c[i+1]=d[x][i];
    ans=0;
    dfs(0,0,1);
    sum[x]=ans-1;
    if(x==1)sum[x]=n-1;
   // printf("%d %d\n",x,sum[x]);
}

int main(){
    init();
    tdata{
        mem(cot,0);
        scanff(n);
        rep(i,1,n)scanff(a[i]);
        rep(i,1,n)getcot(a[i]);
        rep(i,1,n)getp(a[i]);
        ll ans=(ll(n)*ll(n-1)*ll(n-2))/2LL/3LL;
        ll s1=0;
        rep(i,1,n){
            s1+=ll(sum[a[i]])*ll(n-1-sum[a[i]]);
        }
        s1/=2;
        ans-=s1;
        printf("%lld\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值