【CUGBACM15级BC第9场 A】hdu 4993 Revenge of ex-Euclid

70 篇文章 0 订阅

Revenge of ex-Euclid

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 877    Accepted Submission(s): 531


Problem Description
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, which computes, besides the greatest common divisor of integers a and b, the coefficients of Bézout's identity, that is integers x and y such that ax + by = gcd(a, b).
---Wikipedia

Today, ex-Euclid takes revenge on you. You need to calculate how many distinct positive pairs of (x, y) such as ax + by = c for given a, b and c.
 

Input
The first line contains a single integer T, indicating the number of test cases.

Each test case only contains three integers a, b and c.

[Technical Specification]
1. 1 <= T <= 100
2. 1 <= a, b, c <= 1 000 000
 

Output
For each test case, output the number of valid pairs.
 

Sample Input
  
  
2 1 2 3 1 1 4
 

Sample Output
  
  
1 3
 
题意:
寻找ax+by = c有多少组解!

#include<bits/stdc++.h>
#include <ctime>
using namespace std;
typedef long long ll;
const int MAXN = 1 * 1e5 + 500;
const ll M = 1e9 + 7;

int main()
{
    ///clock_t start_time = clock();

    ///clock_t end_time = clock();
    ///cout << "Running time is: " << static_cast<double>(end_time - start_time) / CLOCKS_PER_SEC * 1000 << "ms" << endl;
    std::ios::sync_with_stdio(false);
    int t;
    cin >> t;
    while (t--)
    {
        int a, b, c, cnt = 0;
        cin >> a >> b >> c;
        for (int x = 1; x * a < c; x++)
        {
            if ((c - a*x) % b == 0)
            {
                cnt++;
            }
        }
        cout << cnt << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值