【金融】- 净资产收益率(ROE)计算,杜邦分析法+python处理

本文介绍了净资产收益率(ROE)的概念,通过杜邦分析法分解为销售净利率、总资产周转率和权益乘数三个部分,并展示了使用Python计算ROE的实验过程,包括数据获取、代码实现及结果验证。同时,提供了财务报表数据来源以供直接查看ROE。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考资料:
《财务报表之-杜邦分析法》 - b站
但不得不说,效果实在不好:画质音质不佳,有年代感,视频画面不全。

净资产收益率:return on equity(ROE)

一、初识ROE

来源:股票价值分析指标(07):净资产收益率ROE & 杜邦分析法 - b站
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、净资产收益率计算公式

ROE = 销售净利率X总资产周转率X权益乘数。这就是杜邦分析。
参考:净资产收益率:巴菲特选股最看重的指标 - 雪球
简单来说,
1、销售净利率=净利润÷销售收入,表明了企业卖的产品赚不赚钱;
2、资产周转率=销售收入÷资产总额,表明了企业赚钱的次数,周转几次就赚几次钱;
3、权益乘数=资产总额÷所有者权益总额,反映了企业杠杆的大小。我不仅用自己投入的钱赚钱,也借别人的钱来赚钱,那么,我撬动外部资源的能力有多大呢?

每一个内容的具体部分,可以参考下图(来源百度百科)。
在这里插入图片描述

三、计算ROE

3.1 实验数据

只计算3月份的
在这里插入图片描述

3.2 代码

import pandas as pd

path = "数据.csv"
df = pd.read_csv(open(path))

name = '月份' #用来获取数字的含义
col = '3月' #选中哪一个月份

print(col)
print("{}: {}".format(df[name][0].strip(),df[col][0])) #不含税销售收入

print("=="*40) 
print("{}: {}".format(df[name][1].strip(),df[col][1])) #销售成本
print("{}: {}".format(df[name][2].strip(),df[col][2])) #销售毛利
maoli = float(df[col][0]) - float(df[col][1]) #销售毛利
print("计算验证=> 销售毛利=销售收入-销售成本= {}-{}= {}".format(df[col][0], df[col][1], maoli))
print("{}: {}".format(df[name][6].strip(),df[col][6])) #销售费用
print("{}: {}".format(df[name][7].strip(),df[col][7]))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值