这题是一题水题,可以直接模拟~~
只要我们知道1989年12月13日为星期几,然后直接两重循环来做,因为数据不是很大。
#include<iostream>
using namespace std;
int main()
{
int n,t=3;
int a[12]={31,31,28,31,30,31,30,31,31,30,31,30};
int ans[7]={0};
cin>>n;
for(int i=1900;i<=1900+n-1;i++)
{
if(i%400==0||(i%100!=0&&i%4==0)) a[2]=29;
for(int j=0;j<12;j++)
{
t=(t+a[j])%7;
ans[t]++;
}
a[2]=28;
}
for(int i=0;i<7;i++) cout<<ans[(i+6)%7]<<' ';
cout<<endl;
return 0;
}
还有一个NB公式用来算某年某月某日是星期几,做完后看见题解才知道这个蔡勒公式(Zeller),具体怎么算可以直接百度,下面是用蔡勒公式算。
w:星期; w对7取模得:0-星期日,1-星期一,2-星期二,3-星期三,4-星期四,5-星期五,6-星期六
c:世纪减1(年份前两位数)
y:年(后两位数)
m:月(m大于等于3,小于等于14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月来计算,比如2003年1月1日要看作2002年的13月1日来计算)
d:日
[ ]代表取整,即只要整数部分。
#include<iostream>
using namespace std;
int main()
{
int n;
int ans[7];
cin>>n;
memset(ans,0,sizeof(ans));
for (int i=1900; i<=1900+n-1; i++)
for (int j=1; j<=12; j++)
{
int c=i/100;
int y=i%100;
int w;
int m=j;
if (j==1 || j==2)
{
m+=12;
c=(i-1)/100;
y=(i-1)%100;
}
w=(y+y/4+c/4-2*c+(26*(m+1)/10)+12)%7;
w=(w+7)%7;
ans[w]++;
}
for (int i=0; i<7; i++) cout<<ans[(i+6)%7]<<" ";
cout<<endl;
return 0;
}
在题解后看到一位oler用switch来做。
#include<iostream>
using namespace std;
bool isleap(int y)
{
if((y%4==0&&y%100!=0)||(y%400==0)) return 1;
else return 0;
}
int main()
{
int sun=0,mon=0,tue=0,wed=0,thu=0,fri=0,sat=0;
int num;
cin>>num;
int tmp=6;
for(int i=0;i<num;i++)
{
int year=1900+i;
for(int j=1;j<=12;j++)
{
switch(tmp%7)
{
case 1:mon++;break;
case 2:tue++;break;
case 3:wed++;break;
case 4:thu++;break;
case 5:fri++;break;
case 6:sat++;break;
case 0:sun++;
}
if(j==1||j==3||j==5||j==7||j==8||j==10||j==12) tmp+=31;
else if(j==2)
{
if(isleap(year)) tmp+=29;
else tmp+=28;
}
else tmp+=30;
}
}
cout<<sat<<" "<<sun<<" "<<mon<<" "<<tue<<" "<<wed<<" "<<thu<<" "<<fri<<endl;
return 0;
}