金明的预算方案(budget.pas/c/cpp)
【问题描述】
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 | 附件 |
电脑 | 打印机,扫描仪 |
书柜 | 图书 |
书桌 | 台灯,文具 |
工作椅 | 无 |
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
请你帮助金明设计一个满足要求的购物单。
【输入文件】
输入文件budget.in 的第1行,为两个正整数,用一个空格隔开:
N m
(其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
v p q
(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
【输出文件】
输出文件budget.out只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
【输入样例】
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
【输出样例】
2200
/*
noip 2006 金明的预算方案
这种属于依赖型背包,可以变成有条件01背包(什么也不选,只选主件,选主件和第一件附件,选主件和第二件附件,选主件和两件附件;
*/
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct bag
{
int w;
int col;
int fj[4];
};
bag s[85];
int f[32105];
int n ,m;
void solve()
{
f[0]=0;
for (int i=1; i<=n; i++)
for (int j=m; j>=0; j--)
{
if (!s[i].fj[3]) continue;
else
{
int t1=s[i].fj[1];
int t2=s[i].fj[2];
if (j>=s[i].w){
int f0=f[j-s[i].w]+s[i].col*s[i].w;
f[j]=max(f0, f[j]);
}
if (j>=s[i].w+s[t1].w){
int f1=f[j-s[i].w-s[t1].w]+s[i].w*s[i].col+s[t1].w*s[t1].col;
f[j]=max(f[j], f1);
}
if (t2>0 && j>=s[i].w+s[t1].w+s[t2].w)
{
int f2=f[j-s[i].w-s[t1].w-s[t2].w]+s[i].w*s[i].col+s[t1].w*s[t1].col+s[t2].w*s[t2].col;
f[j]=max(f[j], f2);
}
if (t2>0 && j>=s[i].w+s[t2].w){
int f3=f[j-s[i].w-s[t2].w]+s[i].w*s[i].col+s[t2].w*s[t2].col;
f[j]=max(f3, f[j]);
}
}
}
printf("%d ", f[m]);
}
void init()
{
memset(s, 0, sizeof(s));
scanf("%d %d", &m, &n);
for (int i=1; i<=n; i++)
{
scanf("%d %d %d", &s[i].w, &s[i].col, &s[i].fj[1]);
if (s[i].fj[1]) {
if (s[s[i].fj[1]].fj[1]>0) s[s[i].fj[1]].fj[2]=i;
else s[s[i].fj[1]].fj[1]=i;
s[i].fj[1]=0;
}
else
{
s[i].fj[3]=-1;
}
}
memset(f, 0, sizeof(f));
}
int main()
{
freopen("budget.in", "r", stdin);
freopen("budget.out", "w", stdout);
init();
solve();
return 0;
}