大意:有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第
n
行第
m
列的格子有几种方案,答案对
1000000007取模
思路:每次都是向右下角走,然后就是
S
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
E
这么看来类似于杨辉三角,
1 1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15
1 4 10 20
1 5 15
1 6
1
但是杨辉三角有组合公式(第n行第m个数为C(n-1,m-1)),因为第一、第N行第一、N列,不用故减去所以类似的可以退出公式C(n+m-4,n-2)
#include<map>
#include<queue>
#include<cmath>
#include<cstdio>
#include<stack>
#include<iostream>
#include<cstring>
#include<algorithm>
#define LL int
#define inf 0x3f3f3f3f
#define eps 1e-8
#include<vector>
#define ls l,mid,rt<<1
#define rs mid+1,r,rt<<1|1
#define LL __int64
using namespace std;
const int mod = 1000000007;
LL mul[100010];
LL qpow(LL x, LL y, LL mod)
{
x %= mod;
LL ans = 1;
for(;y > 0; y>>= 1)
{
if(y & 1)
{
ans *= x;
ans %= mod;
}
x *= x;
x %= mod;
}
return ans;
}
// (x / y)%mod
LL div(LL x, LL y, LL mod)
{
x %= mod;
LL ans = x * qpow(y, mod - 2, mod);
ans %= mod;
return ans;
}
LL com(int a,int b){
if(a > b/2)
a = b-a;
int i,j;
LL t1 = 1,t2 = 1;
for(i = b,j = 1;j <= a;--i,++j){
t1 = (t1*i)%mod;
t2 = (t2*j)%mod;
if(t1%t2 == 0){
t1 = div(t1,t2,mod);
t2 = 1;
}
}
return div(t1,t2,mod);
}
int main(){
int n,m,i,j,k;LL ans,jie = 1;
while(~scanf("%d%d",&n,&m)){
ans = 0;
ans = com(m-2,n+m-4)%mod;
printf("%I64d\n",ans);
}
return 0;
}