问题描述
如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵。
给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True。
示例 1:
输入:
matrix = [
[1,2,3,4],
[5,1,2,3],
[9,5,1,2]
]
输出: True
解释:
在上述矩阵中, 其对角线为:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
各条对角线上的所有元素均相同, 因此答案是True。
示例 2:
输入:
matrix = [
[1,2],
[2,2]
]
输出: False
解释:
对角线"[1, 2]"上的元素不同。
说明:
matrix 是一个包含整数的二维数组。
matrix 的行数和列数均在 [1, 20]范围内。
matrix[i][j] 包含的整数在 [0, 99]范围内。
进阶:
- 如果矩阵存储在磁盘上,并且磁盘内存是有限的,因此一次最多只能将一行矩阵加载到内存中,该怎么办?
- 如果矩阵太大以至于只能一次将部分行加载到内存中,该怎么办?
解题思路
-
不进阶:
就是找规律,看看相等的位置下标有什么规律,发现相等的下标值同时加1
3*3介
a02
a01 a12
a00 a11 a22
a10 a21
a20 -
3*4介:
a03
a02 a13
a01 a12 a23
a00 a11 a22
a12 a21
a20 -
进阶:
就是每次维护一个数组,存上一行的值,然后跟整个数组遍历比较
不进阶实现
class Solution {
public boolean isToeplitzMatrix(int[][] matrix) {
if(matrix==null){
return false;
}
boolean res = true;
int row = matrix.length;
int rank = matrix[0].length;
for (int i = 0; i < row; i++) {
for (int j = 0; j < rank; j++) {
if (i + 1 < row&&j+1<rank){
if( matrix[i][j]!=matrix[i+1][j+1]){
return false;
}
}
}
}
return res;
}
}
进阶实现
class Solution {
public boolean isToeplitzMatrix(int[][] matrix) {
int row = matrix.length;
int rank = matrix[0].length;
int[] temp = matrix[0];
for(int i=1;i<row;i++){
for(int j =1;j<rank;j++){
if(matrix[i][j]!=temp[j-1]){
return false;
}
}
temp=matrix[i];
}
return true;
}
}