Leetcode __766. 托普利茨矩阵

问题描述

如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵。

给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True。

示例 1:

输入:
matrix = [
[1,2,3,4],
[5,1,2,3],
[9,5,1,2]
]
输出: True
解释:
在上述矩阵中, 其对角线为:
“[9]”, “[5, 5]”, “[1, 1, 1]”, “[2, 2, 2]”, “[3, 3]”, “[4]”。
各条对角线上的所有元素均相同, 因此答案是True。
示例 2:

输入:
matrix = [
[1,2],
[2,2]
]
输出: False
解释:
对角线"[1, 2]"上的元素不同。

说明:
matrix 是一个包含整数的二维数组。
matrix 的行数和列数均在 [1, 20]范围内。
matrix[i][j] 包含的整数在 [0, 99]范围内。
进阶:

  1. 如果矩阵存储在磁盘上,并且磁盘内存是有限的,因此一次最多只能将一行矩阵加载到内存中,该怎么办?
  2. 如果矩阵太大以至于只能一次将部分行加载到内存中,该怎么办?

解题思路

  • 不进阶
    就是找规律,看看相等的位置下标有什么规律,发现相等的下标值同时加1
    3*3介
    a02
    a01 a12
    a00 a11 a22
    a10 a21
    a20

  • 3*4介:
    a03
    a02 a13
    a01 a12 a23
    a00 a11 a22
    a12 a21
    a20

  • 进阶
    就是每次维护一个数组,存上一行的值,然后跟整个数组遍历比较

不进阶实现

class Solution {
    public boolean isToeplitzMatrix(int[][] matrix) {
        if(matrix==null){
            return false;
        }
        boolean res = true;
        int row = matrix.length;
        int rank = matrix[0].length;

        for (int i = 0; i < row; i++) {
            for (int j = 0; j < rank; j++) {
                if (i + 1 < row&&j+1<rank){
                    if( matrix[i][j]!=matrix[i+1][j+1]){
                        return false;
                    }
                   
                }
            }

        }
        return res;
    }
}

进阶实现

class Solution {
    public boolean isToeplitzMatrix(int[][] matrix) {
        int row = matrix.length;
        int rank = matrix[0].length;
        int[] temp = matrix[0];
        for(int i=1;i<row;i++){
            for(int j =1;j<rank;j++){
                if(matrix[i][j]!=temp[j-1]){
                    return false;
                }
            }
            temp=matrix[i];
        }
        return true;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值