一、同余定理
若两个整数a,b被自然数m除有相同的余数,称a,b对于模m同余,a≡b(mod m)。
二、同余的重要性质
若a≡b(mod m),那么一定有(a-b)=km。
三、余数判别法
1.末位判别法
整数N被___除 | 等于N的___被它们除 |
---|---|
2/5 | 末一位 |
4/25 | 末两位 |
8/125 | 末三位 |
2.截断求和法
数字 | ___位截断求和 |
---|---|
3/ 9 | 一位 |
3/ 11/ 33/ 99 | 两位 |
3/ 9/ 27/ 37/ 111/ 333/ 999 | 三位 |
例如:152742÷9的余数是多少?
1+5+2+7+4+2=21
21 mod 9 = 3
3.截断作差法
数字 | ___位截断作差 |
---|---|
11 | 一位截断之后,【N的奇位之和 - N的偶位之和】mod 11 |
7/ 11/ 13 | 三位截断之后,【N的奇位节和 - N的偶位节和】mod 11 |
例如:152742÷11的余数是多少?
2+7+5 - (4+2+1)=7
7 mod 11 = 7