背景知识
有效的「括号」:题目输入的字符串由一系列「左括号」和「右括号」组成,但是有一些额外的括号,使得括号不能正确配对。对于括号配对规则如果还不太清楚的读者,可以先完成问题「20. 有效的括号」。
可以一次遍历计算出多余的「左括号」和「右括号」:
根据括号匹配规则和根据求解「22. 括号生成」的经验,我们知道:如果当前遍历到的「左括号」的数目严格小于「右括号」的数目则表达式无效。因此,我们可以遍历一次输入字符串,统计「左括号」和「右括号」出现的次数。
当遍历到「左括号」的时候:
「左括号」数量加 11。
当遍历到「右括号」的时候:
如果此时「左括号」的数量不为 00,因为「右括号」可以与之前遍历到的「左括号」匹配,此时「左括号」出现的次数 -1−1;
如果此时「左括号」的数量为 00,「右括号」数量加 11。
通过这样的计数规则,得到的「左括号」和「右括号」的数量就是各自最少应该删除的数量。
代码
class Solution {
private List<String> res = new ArrayList<String>();
public List<String> removeInvalidParentheses(String s) {
int lremove = 0;
int rremove = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
lremove++;
} else if (s.charAt(i) == ')') {
if (lremove == 0) {
rremove++;
} else {
lremove--;
}
}
}
helper(s, 0, 0, 0, lremove, rremove);
return res;
}
private void helper(String str, int start, int lcount, int rcount, int lremove, int rremove) {
if (lremove == 0 && rremove == 0) {
if (isValid(str)) {
res.add(str);
}
return;
}
for (int i = start; i < str.length(); i++) {
if (i != start && str.charAt(i) == str.charAt(i - 1)) {
continue;
}
// 如果剩余的字符无法满足去掉的数量要求,直接返回
if (lremove + rremove > str.length() - i) {
return;
}
// 尝试去掉一个左括号
if (lremove > 0 && str.charAt(i) == '(') {
helper(str.substring(0, i) + str.substring(i + 1), i, lcount, rcount, lremove - 1, rremove);
}
// 尝试去掉一个右括号
if (rremove > 0 && str.charAt(i) == ')') {
helper(str.substring(0, i) + str.substring(i + 1), i, lcount, rcount, lremove, rremove - 1);
}
if (str.charAt(i) == ')') {
lcount++;
} else if (str.charAt(i) == ')') {
rcount++;
}
// 当前右括号的数量大于左括号的数量则为非法,直接返回.
if (rcount > lcount) {
break;
}
}
}
private boolean isValid(String str) {
int cnt = 0;
for (int i = 0; i < str.length(); i++) {
if (str.charAt(i) == '(') {
cnt++;
} else if (str.charAt(i) == ')') {
cnt--;
if (cnt < 0) {
return false;
}
}
}
return cnt == 0;
}
}