文本问答任务

抽取式问答

抽取式问答任务指给定一个问题和一段文本,从这段文本中找出能回答该问题的文本片段。

需要安装的库

  • pytorch
  • transformers
  • transformers datasets

数据加载

from datasets import load_dataset, load_metric
squad_v2 = False
model_checkpoint = "distilbert-base-uncased"
batch_size = 16
datasets = load_dataset("squad_v2" if squad_v2 else "squad")

数据预处理

from transformers import AutoTokenizer 
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
import transformers
assert isinstance(tokenizer, transformers.PreTrainedTokenizerFast)

# 数据预处理
def prepare_train_features(examples):
    pad_on_right = tokenizer.padding_side == "right"
    max_length = 384 # 输入feature的最大长度,question和context拼接之后
    doc_stride = 128 # 2个切片之间的重合token数量。
    tokenized_examples = tokenizer(
        examples["question" if pad_on_right else "context"],
        examples["context" if pad_on_right else "question"],
        truncation="only_second" if pad_on_right else "only_first",
        max_length=max_length,
        stride=doc_stride,
        return_overflowing_tokens=True,
        return_offsets_mapping=True,
        padding="max_length",
    )

    sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
    offset_mapping = tokenized_examples.pop("offset_mapping")

    # 重新标注数据
    tokenized_examples["start_positions"] = []
    tokenized_examples["end_positions"] = []

    for i, offsets in enumerate(offset_mapping):
        # 对每一片进行处理
        # 将无答案的样本标注到CLS上
        input_ids = tokenized_examples["input_ids"][i]
        cls_index = input_ids.index(tokenizer.cls_token_id)

        # 区分question和context
        sequence_ids = tokenized_examples.sequence_ids(i)

        # 拿到原始的example 下标.
        sample_index = sample_mapping[i]
        answers = examples["answers"][sample_index]
        # 如果没有答案,则使用CLS所在的位置为答案.
        if len(answers["answer_start"]) == 0:
            tokenized_examples["start_positions"].append(cls_index)
            tokenized_examples["end_positions"].append(cls_index)
        else:
            # 答案的character级别Start/end位置.
            start_char = answers["answer_start"][0]
            end_char = start_char + len(answers["text"][0])

            # 找到token级别的index start.
            token_start_index = 0
            while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
                token_start_index += 1

            # 找到token级别的index end.
            token_end_index = len(input_ids) - 1
            while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
                token_end_index -= 1

            # 检测答案是否超出文本长度,超出的话也适用CLS index作为标注.
            if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # 如果不超出则找到答案token的start和end位置。.
                # Note: we could go after the last offset if the answer is the last word (edge case).
                while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                    token_start_index += 1
                tokenized_examples["start_positions"].append(token_start_index - 1)
                while offsets[token_end_index][1] >= end_char:
                    token_end_index -= 1
                tokenized_examples["end_positions"].append(token_end_index + 1)
    return tokenized_examples
# 函数调用
tokenized_datasets = datasets.map(prepare_train_features, batched=True, remove_columns=datasets["train"].column_names)

微调预训练模型

from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer

# 定义模型
model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)

# 训练设定参数
args = TrainingArguments(
    f"test-squad",
    evaluation_strategy = "epoch",
    learning_rate=2e-5, #学习率
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size,
    num_train_epochs=1, # 训练的轮次
    weight_decay=0.01,
)

# 定义一个data collector
from transformers import default_data_collator
data_collator = default_data_collator

# 定义trainer
trainer = Trainer(
    model,
    args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
    data_collator=data_collator,
    tokenizer=tokenizer,
)
# 训练
trainer.train()
trainer.save_model("test-squad-trained")  #每次训练完保存模型

模型评价

流程图

模型后处理
start_point_cls
end_point_cls
start_point
end_point
start_point_20
end_point_20
start_point_20
end_point_20
选取位置在context中且start_point小于end_point结果
取得分前n_best_size结果
得分求和
选出得分最高答案
计算无答案时的得分求和
验证集
验证集预处理
模型
评价指标计算

注:因为需要判断是否是context中的答案(预测答案不在question文本中),所以需要对验证集的输入数据进行预处理

验证集预处理

import numpy as np
n_best_size = 20
# 预处理函数
def prepare_validation_features(examples):
    # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
    # in one example possible giving several features when a context is long, each of those features having a
    # context that overlaps a bit the context of the previous feature.
    tokenized_examples = tokenizer(
        examples["question" if pad_on_right else "context"],
        examples["context" if pad_on_right else "question"],
        truncation="only_second" if pad_on_right else "only_first",
        max_length=max_length,
        stride=doc_stride,
        return_overflowing_tokens=True,
        return_offsets_mapping=True,
        padding="max_length",
    )

    # Since one example might give us several features if it has a long context, we need a map from a feature to
    # its corresponding example. This key gives us just that.
    sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

    # We keep the example_id that gave us this feature and we will store the offset mappings.
    tokenized_examples["example_id"] = []

    for i in range(len(tokenized_examples["input_ids"])):
        # Grab the sequence corresponding to that example (to know what is the context and what is the question).
        sequence_ids = tokenized_examples.sequence_ids(i)
        context_index = 1 if pad_on_right else 0

        # One example can give several spans, this is the index of the example containing this span of text.
        sample_index = sample_mapping[i]
        tokenized_examples["example_id"].append(examples["id"][sample_index])

        # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
        # position is part of the context or not.
        tokenized_examples["offset_mapping"][i] = [
            (o if sequence_ids[k] == context_index else None)
            for k, o in enumerate(tokenized_examples["offset_mapping"][i])
        ]

    return tokenized_examples
# 函数调用
validation_features = datasets["validation"].map(prepare_validation_features,batched=True, remove_columns=datasets["validation"].column_names)
# 验证集预测结果
raw_predictions = trainer.predict(validation_features)

模型后处理

import collections
from tqdm.auto import tqdm
# 显示example_id和offset_mapping
validation_features.set_format(type=validation_features.format["type"], columns=list(validation_features.features.keys()))

# 后处理函数
def postprocess_qa_predictions(examples, features, raw_predictions, n_best_size = 20, max_answer_length = 30):
    all_start_logits, all_end_logits = raw_predictions
    # Build a map example to its corresponding features.
    example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
    features_per_example = collections.defaultdict(list)
    for i, feature in enumerate(features):
        features_per_example[example_id_to_index[feature["example_id"]]].append(i)

    # The dictionaries we have to fill.
    predictions = collections.OrderedDict()

    # Logging.
    print(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")

    # Let's loop over all the examples!
    for example_index, example in enumerate(tqdm(examples)):
        # Those are the indices of the features associated to the current example.
        feature_indices = features_per_example[example_index]

        min_null_score = None # Only used if squad_v2 is True.
        valid_answers = []
        
        context = example["context"]
        # Looping through all the features associated to the current example.
        for feature_index in feature_indices:
            # We grab the predictions of the model for this feature.
            start_logits = all_start_logits[feature_index]
            end_logits = all_end_logits[feature_index]
            # This is what will allow us to map some the positions in our logits to span of texts in the original
            # context.
            offset_mapping = features[feature_index]["offset_mapping"]

            # Update minimum null prediction.
            cls_index = features[feature_index]["input_ids"].index(tokenizer.cls_token_id)
            feature_null_score = start_logits[cls_index] + end_logits[cls_index]
            if min_null_score is None or min_null_score < feature_null_score:
                min_null_score = feature_null_score

            # Go through all possibilities for the `n_best_size` greater start and end logits.
            start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
            end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
                    # to part of the input_ids that are not in the context.
                    if (
                        start_index >= len(offset_mapping)
                        or end_index >= len(offset_mapping)
                        or offset_mapping[start_index] is None
                        or offset_mapping[end_index] is None
                    ):
                        continue
                    # Don't consider answers with a length that is either < 0 or > max_answer_length.
                    if end_index < start_index or end_index - start_index + 1 > max_answer_length:
                        continue

                    start_char = offset_mapping[start_index][0]
                    end_char = offset_mapping[end_index][1]
                    valid_answers.append(
                        {
                            "score": start_logits[start_index] + end_logits[end_index],
                            "text": context[start_char: end_char]
                        }
                    )
        
        if len(valid_answers) > 0:
            best_answer = sorted(valid_answers, key=lambda x: x["score"], reverse=True)[0]
        else:
            # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
            # failure.
            best_answer = {"text": "", "score": 0.0}
        
        # Let's pick our final answer: the best one or the null answer (only for squad_v2)
        if not squad_v2:
            predictions[example["id"]] = best_answer["text"]
        else:
            answer = best_answer["text"] if best_answer["score"] > min_null_score else ""
            predictions[example["id"]] = answer

    return predictions
# 函数调用
final_predictions = postprocess_qa_predictions(datasets["validation"], validation_features, raw_predictions.predictions)

评价指标计算

metric = load_metric("squad_v2" if squad_v2 else "squad")
if squad_v2:
    formatted_predictions = [{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()]
else:
    formatted_predictions = [{"id": k, "prediction_text": v} for k, v in final_predictions.items()]
references = [{"id": ex["id"], "answers": ex["answers"]} for ex in datasets["validation"]]
metric.compute(predictions=formatted_predictions, references=references)

多选任务

  • 多选任务是在多个给定答案中进行单项选择。
  • swag数据集
    • sent1:题干
    • sent2:答案的前半部分
    • ending0:答案1的后半部分
    • ending1:答案21的后半部分
    • ending2:答案3的后半部分
    • ending3:答案4的后半部分
    • label:正确答案的label

需要安装的库

  • pytorch
  • transformers
  • transformers datasets

数据加载

from datasets import load_dataset, load_metric
model_checkpoint = "bert-base-uncased"
batch_size = 8
datasets = load_dataset("swag", "regular")

数据预处理

from transformers import AutoTokenizer 
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)

# 数据预处理
def preprocess_function(examples):
    # Repeat each first sentence four times to go with the four possibilities of second sentences.
    first_sentences = [[context] * 4 for context in examples["sent1"]]
    # Grab all second sentences possible for each context.
    question_headers = examples["sent2"]
    second_sentences = [[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)]
    # Flatten everything
    first_sentences = sum(first_sentences, [])
    second_sentences = sum(second_sentences, [])
    # Tokenize
    tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True) #truncation=True,确保比所选模型所能处理的更长的输入将被截断为模型所能接受的最大长度。
    # Un-flatten
    return {k: [v[i:i+4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
    
# 函数调用
encoded_datasets = datasets.map(preprocess_function, batched=True)

微调预训练模型

from transformers import AutoModelForMultipleChoice, TrainingArguments, Trainer

# 定义模型
model = AutoModelForMultipleChoice.from_pretrained(model_checkpoint)

# 训练设定参数
args = TrainingArguments(
    "test-glue",
    evaluation_strategy = "epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size,
    num_train_epochs=1,
    weight_decay=0.01,
)

# 定义一个data collector
from dataclasses import dataclass
from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
from typing import Optional, Union
import torch

@dataclass
class DataCollatorForMultipleChoice:
    """
    Data collator that will dynamically pad the inputs for multiple choice received.
    """

    tokenizer: PreTrainedTokenizerBase
    padding: Union[bool, str, PaddingStrategy] = True
    max_length: Optional[int] = None
    pad_to_multiple_of: Optional[int] = None

    def __call__(self, features):
        label_name = "label" if "label" in features[0].keys() else "labels"
        labels = [feature.pop(label_name) for feature in features]
        batch_size = len(features)
        num_choices = len(features[0]["input_ids"])
        flattened_features = [[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features]
        flattened_features = sum(flattened_features, [])
        
        batch = self.tokenizer.pad(
            flattened_features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors="pt",
        )
        
        # Un-flatten
        batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
        # Add back labels
        batch["labels"] = torch.tensor(labels, dtype=torch.int64)
        return batch

# 定义评价指标函数
import numpy as np
def compute_metrics(eval_predictions):
    predictions, label_ids = eval_predictions
    preds = np.argmax(predictions, axis=1)
    return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}

# 定义trainer
trainer = Trainer(
    model,
    args,
    train_dataset=encoded_datasets["train"],
    eval_dataset=encoded_datasets["validation"],
    tokenizer=tokenizer,
    data_collator=DataCollatorForMultipleChoice(tokenizer),
    compute_metrics=compute_metrics,
)
# 训练
trainer.train()

参考

datawhale文档

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值