线性回归算法梳理
一、机器学习相关概念
1、有监督学习与无监督学习
(1)有监督学习的数据具备特征(features)与预测目标(label),有监督学习同时拥有输入变量x和输出变量y。用一个算法把输入到输出的映射关系——y=f(x)学习出来,当拿到新数据x1时就可以用学习到的映射关系得到相应的y1。有监督学习可分为:回归和分类。在回归问题中,我们会预测一个连续值;在分类问题中,我们会预测一个离散值。常见的有监督学习:线性回归、朴素贝叶斯分类、逻辑回归、决策树、SVM、KNN属于有监督学习。
(2) 无监督学习的没有预测目标(label),只有输入变量x。无监督学习目的是将训练数据潜在的结构或分布找出来,以便于我们对这些数据有更多了解。常见的无监督学习:KMeans、主成分分析。
2、过拟合、欠拟合、泛化能力、交叉验证
(1)过拟合是指模型在训练集上表现良好,在测试集上表现不好的情况。过拟合的原因是模型对数据学习的太彻底,以至于噪声数据也学习到了。
解决方法:
(1.1)重新清洗数据,清洗不纯数据。
(1.2)增大数据的训练量。
(1.3)采用正则化方法。正则化方法包括L0,L1,L2正则,在机器学习中一般用L2正则。
https://blog.csdn.net/T7SFOKzorD1JAYMSFk4/article/details/80997489
上面链接介绍正则化。
(1.4)采用dropout方法。通常用在神经网络中,在训练过程中随机丢掉一部分神经元。
(1.5)交叉验证法。
(2)欠拟合是指模型在训练集和测试集上表现的都不好的情况。欠拟合的原因是模型没有很好的学习数据特点,以至于不能很好地拟合。
解决方法:
(2.1)添加其他特征项。
(2.2)添加多项式特征,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强。如上图中就是通过增加二次项解决欠拟合问题。
(2.3)减少正则化参数。
(3) 泛化能力是指学习到的模型对未知数据的预测能力,也可以理解为迁移能力。通过测试误差来评价泛化能力。其中过拟合和欠拟合就是机器学习泛化能力弱的两大原因。
(4)交叉验证其基本思想就是将原始数据(dataset)进行分组,一部分做为训练