题目
思路
利用满二叉树的编号,如下图:
题目中树的宽度定义为:某一层最左节点和最右节点之间的节点数(包括空结点+包括这两个节点);
满二叉树的编号是按照层次遍历进行编排的,同一层之间的两个节点编号进行相减再加1,正是题目中的宽度定义。
- 根节点编号为 1 1 1
- 某节点编号为 i i i,则左孩子编号为 2 ∗ i 2*i 2∗i,右孩子编号为 2 ∗ i + 1 2*i+1 2∗i+1
广度优先搜索(BFS)
即层次遍历,一层一层的遍历节点。
- 用一个键值对类型存<节点,编号>
- 使用链表 a r r arr arr存储第 i i i层的<节点,编号>,节点信息从左到右依次存储在 a r r arr arr
- 从左到右遍历 a r r arr arr中的元素,给 i + 1 i+1 i+1层节点编号并加入到链表 t m p tmp tmp中,即 t m p tmp tmp存储下一层的节点信息
- 第 i i i层最左边的节点为 a r r arr arr的第一个元素,第 i i i层最右边的节点为 a r r arr arr的最后一个元素; a r r arr arr链表最右边的元素- a r r arr arr链表最左边的元素+1,即第 i i i层的宽度
- t m p tmp tmp赋值给 a r r arr arr重复以上操作
- 逐层遍历过程中维护宽度最大值,最后返回
class Solution {
public int widthOfBinaryTree(TreeNode root) {
List <Pair<TreeNode,Integer>>arr = new ArrayList<Pair<TreeNode,Integer>>();
arr.add(new Pair<TreeNode,Integer>(root,1));
int res = 0;
while(!arr.isEmpty()){
List <Pair<TreeNode,Integer>>tmp = new ArrayList<Pair<TreeNode,Integer>>();
for(Pair<TreeNode,Integer> i:arr){
TreeNode node = i.getKey();
int index = i.getValue();
if(node.left!=null) tmp.add(new Pair<TreeNode,Integer>(node.left,2*index));
if(node.right!=null) tmp.add(new Pair<TreeNode,Integer>(node.right,2*index+1));
}
res = Math.max(res,arr.get(arr.size()-1).getValue()-arr.get(0).getValue()+1);
arr = tmp;
}
return res;
}
}
深度优先遍历(DFS)
- 采用的是前序遍历,所以每层最左边的节点都会被优先访问到。
- 创建Map存储键值对<层数,编号>。
- 当遍历到某个节点时,将该节点所在层数和编号作为键值对加入Map;采用的函数是 p u t I f A b s e n t putIfAbsent putIfAbsent,确保Map存储的都是每层的最左边元素。
- 遍历到某个节点就将它与所在层最左边节点编号进行计算宽度,维护最大宽度并返回。
class Solution {
Map<Integer, Integer> levelMin = new HashMap<Integer, Integer>();
public int widthOfBinaryTree(TreeNode root) {
return dfs(root, 1, 1);
}
public int dfs(TreeNode node, int depth, int index) {
if (node == null) {
return 0;
}
levelMin.putIfAbsent(depth, index); // 每一层最先访问到的节点会是最左边的节点,即每一层编号的最小值
return Math.max(index - levelMin.get(depth) + 1, Math.max(dfs(node.left, depth + 1, index * 2), dfs(node.right, depth + 1, index * 2 + 1)));
}
}