Uva442 Matrix Chain Multiplication【stack】【例题6-3】

题目:Matrix Chain Multiplication

题意:给n个矩阵的维度,算矩阵链乘表达式

思路:栈操作即可,定义结构体时加个构造方法,存入时直接存!

参考:入门经典-例6-3-P141

代码:

#include <iostream>
#include <stack>
#include <string>
using namespace std;
struct Matrix{
    int a,b;
    Matrix(int a=0,int b=0):a(a),b(b){}//构造方法
}m[26];
stack<Matrix>s;
int main()
{
    int n;
    cin >> n;
    while(n--)
    {
        string name;
        cin >> name;
        int k = name[0] - 'A';
        cin >> m[k].a >> m[k].b;
    }
    string expr;
    while(cin >> expr)
    {
        int len = expr.length();
        bool error = false;
        int ans = 0;
        for(int i=0;i<len;i++)
        {
            if(isalpha(expr[i]))
                s.push(m[expr[i] - 'A']);
            else if(expr[i] == ')')
            {
                Matrix m2 = s.top();s.pop();
                Matrix m1 = s.top();s.pop();
                if(m1.b != m2.a)
                {
                    error = true;
                    break;
                }
                ans += m1.a * m1.b * m2.b;
                s.push(Matrix(m1.a,m2.b));

            }
        }
        if(error)
            cout << "error\n";
        else
            cout << ans << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值