SDUT_最长上升子序列长度_动态规划

最长上升子序列

Time Limit: 3000 ms  Memory Limit: 65536 KiB
Problem Description
一个数的序列bi,当b 1 < b 2 < ... < b S的时候,我们称这个序列是上升的。对于给定的一个序列(a 1, a 2, ..., a N),我们可以得到一些上升的子序列(a i1, a i2, ..., a iK),这里1<= i 1 < i 2 < ... < i K <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。

你的任务,就是对于给定的序列,求出最长上升子序列的长度。
Input
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
Output
最长上升子序列的长度。
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
Hint
#include<stdio.h>
#define max(x,y) (x>y)?x:y
using namespace std;
int a[1010];  //记录序列数 
int dp[1010]; //关键数组 
int main(){
	int n;
	scanf("%d",&n);
	for(int i=0;i<n;i++){
		scanf("%d",&a[i]);
	}
	int k=0;
	for(int i=0;i<n;i++){      //关键循环 
		dp[i]=1;
		for(int j=0;j<i;j++){
			if(a[i]>a[j]){
				dp[i]=max(dp[i],dp[j]+1);
				if(dp[i]>dp[k]){   //网上有误传的答案是没有这个if条件 
					k=i;           //记录关键位置 
				}
			}
		}
	}
	printf("%d\n",dp[k]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值