最长上升子序列
Time Limit: 3000 ms
Memory Limit: 65536 KiB
Problem Description
一个数的序列bi,当b
1 < b
2 < ... < b
S的时候,我们称这个序列是上升的。对于给定的一个序列(a
1, a
2, ..., a
N),我们可以得到一些上升的子序列(a
i1, a
i2, ..., a
iK),这里1<= i
1 < i
2 < ... < i
K <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
Input
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
Output
最长上升子序列的长度。
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
Hint
#include<stdio.h>
#define max(x,y) (x>y)?x:y
using namespace std;
int a[1010]; //记录序列数
int dp[1010]; //关键数组
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
int k=0;
for(int i=0;i<n;i++){ //关键循环
dp[i]=1;
for(int j=0;j<i;j++){
if(a[i]>a[j]){
dp[i]=max(dp[i],dp[j]+1);
if(dp[i]>dp[k]){ //网上有误传的答案是没有这个if条件
k=i; //记录关键位置
}
}
}
}
printf("%d\n",dp[k]);
return 0;
}