啥是机器学习?啥又是深度学习?

说在前面

最近刮起了一阵AI潮,使Immugent不得不重视起这个领域,特别是AI在医学研究上的应用。To be honest,Immugent在写本篇推文之前都不太能分清楚,什么范畴属于机器学习?什么又是属于深度学习?经常把他俩搞混。于是乎,扒拉扒拉文献和参考资料,系统的总结一下,下面把总结出的干货分享给大家。

首先从定义上来分别认识一下:

机器学习是人工智能的一个分支,通过算法让计算机从数据中自动学习规律,并基于学习结果进行预测或决策,而无需显式编程。其核心是“从数据中学习模型”。

深度学习是机器学习的一个子领域,基于多层人工神经网络(尤其是深度神经网络)自动学习数据的多层次特征表示。其核心是“通过非线性变换逐层提取高阶特征”。

三者的范围如下图所示:

图片


机器学习的范畴

核心方法

监督学习(Supervised Learning) 使用带标签的数据训练模型,学习输入到输出的映射关系。 

典型算法:线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林。 应用:房价预测、垃圾邮件分类、信用评分。

无监督学习(Unsupervised Learning) 从无标签数据中发现隐藏模式或结构。

典型算法:K-Means聚类、主成分分析(PCA)、关联规则(Apriori)。 应用:客户分群、异常检测、数据降维。

强化学习(Reinforcement Learning) 通过试错机制与环境交互,最大化长期奖励。

典型算法:Q-Learning、深度Q网络(DQN)。 应用:游戏AI(如AlphaGo)、机器人控制。

优点

可解释性强:模型逻辑清晰(如决策树的规则、线性回归的系数)。

计算效率高:适合中小规模数据,CPU即可快速训练。

适用场景广:结构化数据(表格、数值)的预测、分类、聚类任务。

缺点

依赖特征工程:需人工设计特征,对领域知识要求高。

处理复杂任务能力有限:对非结构化数据(如图像、文本)表现较弱。

典型应用

金融:信用风险评估、股票价格预测。

电商:用户分群、推荐系统(协同过滤)。

医疗:疾病诊断(基于结构化病例数据)。


深度学习的核心

核心方法

卷积神经网络(CNN) 专为图像数据设计,通过卷积核提取局部特征。 应用:图像分类(ResNet)、目标检测(YOLO)、医学影像分析。 循环神经网络(RNN) 处理序列数据(如时间序列、文本),具有短期记忆能力。 

变体:长短期记忆网络(LSTM)、门控循环单元(GRU)。 应用:语音识别、机器翻译、股票价格预测。 

Transformer 基于自注意力机制,擅长捕捉长距离依赖关系。 应用:自然语言处理(BERT、GPT)、图像生成(Vision Transformer)。 

生成对抗网络(GAN) 通过生成器与判别器的对抗训练生成逼真数据。 应用:图像生成(DeepFake)、艺术创作、数据增强。

优点

自动特征提取:无需人工设计特征,直接从原始数据中学习。 处理复杂任务能力强:在非结构化数据(图像、文本、语音)上表现卓越。 端到端学习:从输入到输出直接建模,减少中间步骤。

缺点

数据需求大:需海量标注数据(如ImageNet包含1400万张图像)。 计算成本高:依赖GPU/TPU集群,训练耗时且耗能。 黑盒性质:模型决策过程难以解释,影响可信度(如医疗诊断场景)。

典型应用

计算机视觉:人脸识别、自动驾驶(物体检测)。 

自然语言处理:机器翻译(Google Translate)、聊天机器人(ChatGPT)。

 语音技术:语音助手(Siri、Alexa)、语音合成。 

生成式AI:文本生成(GPT-4)、图像生成(Stable Diffusion)。


二者对比

关系:深度学习是机器学习的技术延伸,两者共享底层理论,但深度学习通过深层神经网络突破了传统机器学习的天花板。

两者的结构如下图所示:

图片

选择策略:

优先机器学习:数据量小、特征明确、需快速部署或强可解释性(如金融风控)。

选择深度学习:数据量大(非结构化)、任务复杂(如语义理解)、资源充足时。

协同应用:

深度学习提取特征(如用CNN提取图像特征) → 机器学习分类/回归。

混合模型(如Transformer+随机森林)解决复杂问题。

最后总结一下:

图片

最后

机器学习和深度学习都是人工智能的重要分支,但它们在方法、应用场景和技术复杂度上有显著区别。简单概括就是以下内容:

选机器学习:数据量小、特征明确、需快速部署或强可解释性(如银行信用评分)。

选深度学习:数据量大(非结构化)、任务复杂(如自动驾驶感知)、资源充足时。

混合使用:用深度学习提取特征(如CNN提取图像特征),再用机器学习模型(如SVM)进行分类。

以上说了一大通,我们能区分出机器学习和深度学习的关系和优缺点就可以啦。

在Immugent看来,甭管黑猫白猫,能抓住老鼠的就是好猫。因此在实际应用时,只需要根据自己的数据类型和目的,不断去尝试即可,哪个模型好使就用哪个。

如果你真的想学习人工智能,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

这里也给大家准备了人工智能各个方向的资料,大家可以微信扫码找我领取哈~

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值