交集并集差集补集

本文详细介绍了集合论中的基本运算,包括并集(AUB)、交集(A∩B)、差集(B-A)以及补集(∁UA),通过实例解释了各运算的概念及表示方法。交集和差集互为逆运算,补集则表示集合的非成员元素。这些基础知识对于理解数学和计算机科学至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

1. 并集
对于两个给定集合A、B,由两个集合所有元素构成的集合,叫做A和B的并集。
记作:AUB 读作“A并B”
例:{3,5}U{2,3,4,6}= {2,3,4,5,6}

2. 交集
对于两个给定集合A、B,由属于A又属于B的所有元素构成的集合,叫做A和B的交集。
记作: A∩B 读作“A交B”
例:A={1,2,3,4,5},B={3,4,5,6,8},A∩B={3,4,5}

3. 差集
记A,B是两个集合,则所有属于A且不属于B的元素构成的集合,叫做集合A减集合B(或集合A与集合B之差),类似地,对于集合A、B,把集合{x∣x∈A,且x∉B}叫做A与B的差集。
记作:B-A

4. 补集
一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集。
记作:∁UA,包括三层含义:
1)A是U的一个子集,即A⊊U;
2)∁UA表示一个集合,且∁UA⊊U;
3)∁UA是由U中所有不属于A的元素组成的集合,∁UA与A没有公共元素,U中的元素分布在这两个集合中。

总结:

  • 交集:A & B,即A与B ( x x ( 😊 😊 ) x x )
  • 并集:A | B, 即A或B ( 😊 😊 ( 😊 😊 ) 😊 😊 )
  • 差集:A - B, 即A减B ( 😊 😊 ( x x ) x x )
  • 补集:A ^ B,即A异B ( 😊 😊 ( x x ) 😊 😊 )

交集和差集互反,即交差互补

Python中,可以使用合(set)来进行交集差集的操作。 1. 交集:两个合中共同存在的元素构成的新合。可以使用`&`算符或者`intersection()`方法来实现。 示例代码: ``` set1 = {1, 2, 3} set2 = {2, 3, 4} intersection_set = set1 & set2 # 或者使用 intersection() 方法 # intersection_set = set1.intersection(set2) print(intersection_set) # 输出: {2, 3} ``` 2. :两个合中所有的元素构成的新合。可以使用`|`运算符或者`union()`方法来实现。 示例代码: ```python set1 = {1, 2, 3} set2 = {2, 3, 4} union_set = set1 | set2 # 或者使用 union() 方法 # union_set = set1.union(set2) print(union_set) # 输出: {1, 2, 3, 4} ``` 3. 差集:第一个合中存在,而第二个合中不存在的元素构成的新合。可以使用`-`运算符或者`difference()`方法来实现。 示例代码: ```python set1 = {1, 2, 3} set2 = {2, 3, 4} difference_set = set1 - set2 # 或者使用 difference() 方法 # difference_set = set1.difference(set2) print(difference_set) # 输出: {1} ``` 4. :在全中存在,但是不在指定合中的元素构成的新合。可以使用`^`运算符或者`symmetric_difference()`方法来实现。 示例代码: ```python set1 = {1, 2, 3} set2 = {2, 3, 4} complement_set = set1 ^ set2 # 或者使用 symmetric_difference() 方法 # complement_set = set1.symmetric_difference(set2) print(complement_set) # 输出: {1, 4} ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值