题目大意:
给出N个询问,给出询问给出a,b,c,d,求有多少个x满足gcd(a,x)=c,lcm(b,x)=d。
N≤2000
1≤a,b,c,d≤2*10^9
分析:
首先我们发现x是d的约数,所以我们可以尝试去枚举d的约数确定x然后判断是否成立,期望分:70~100
然后我们发现确定d的约数的时间,是可以优化的
即我们能够处理出[1,根号2*10^9]的质因数
我们对于每一个d,
进行质因数分解,即
p1^c1*p2^c2*……*pm^cm
注意对于每一个d,至多只有一个pm是>根号d的且自成素数,注意判断
然后我们可以搜索指数从而确定约数
然后再判断条件是否满足
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define M 200005
using namespace std;
int prime[M],v[M],num[30][2],rp,a,b,c,d,ans,cnt = 0;
void work(){
for (int i = 2; i <= M; i++){
if (!v[i]){
prime[++cnt] = i;
v[i] = i;
}
for (int j = 1; j <= cnt; j++){
if (prime[j] > v[i] || i * prime[j] > M) break;
v[i * prime[j]] = prime[j];
}
}
}
int gcd(int aa, int bb){
return bb ? gcd(bb, aa % bb) : aa;
}
void dfs(int x, int dep){
if (x > rp){
if (gcd(a,dep) == b)
if (d % dep == 0)
if (gcd(d/c,d/dep) == 1) ans++;
return;
}
int cp = 1;
for (int i = 0; i <= num[x][1]; i++){
dfs(x + 1, dep * cp);
cp *= num[x][0];
}
}
int main(){
work();
int T;
scanf("%d", &T);
while (T--){
scanf("%d %d %d %d", &a, &b, &c, &d);
if (d % c ==0){
rp = 0;
int e = d;
for (int i = 1; i <= cnt; i++){
if (e == 1) break;
int x = prime[i];
if (e % x == 0){
num[++rp][0] = x;
num[rp][1] = 0;
while (e % x == 0){
num[rp][1]++;
e /= x;
}
}
}
if (e != 1) num[++rp][0] = e, num[rp][1] = 1;
ans = 0;
dfs(1,1);
printf("%d\n", ans);
}
else printf("0\n");
}
return 0;
}