Jzoj P3454 表白___二分+思维+dp

206 篇文章 0 订阅
127 篇文章 0 订阅

题目大意:

2 2 个队伍分别选人,一共有N个人, 1 1 队选N1个人, 2 2 队选N2个人,每一个成员给出在 1 1 队的好影响Q1[i]以及不良影响 C1[i] C 1 [ i ] ,在 2 2 队的好影响Q2[i]以及不良影响 C2[i] C 2 [ i ] ,每个人最多只能进入一个队伍,问最后是2个队的 Q Q 总和与C总和的比例最大,即让 SumQSumC S u m Q S u m C 最大,输出最大比例保留 6 6 位小数。
0<N1+N2N5001Q1,Q220001C1,C250

分析:

我们可以发现这题可以进行对答案的二分,
即二分区间 [106..2000] [ 10 − 6 . .2000 ]
但是因为避免精度的误差,
我选择的是二分 [108..2000] [ 10 − 8 . .2000 ]
然后我们当前二分到的答案,设为 x x
则,我们要判断x是否可行,
显然当 x x 满足,
ΣQ1[i]+ΣQ2[j]ΣC1[i]+ΣC2[j]x
那么,我们化简一下,
约掉分母,
ΣQ1[i]+ΣQ2[j](ΣC1[i]+ΣC2[j])x Σ Q 1 [ i ] + Σ Q 2 [ j ] ≥ ( Σ C 1 [ i ] + Σ C 2 [ j ] ) x
然后去括号,
ΣQ1[i]+ΣQ2[j]ΣC1[i]x+ΣC2[j]x Σ Q 1 [ i ] + Σ Q 2 [ j ] ≥ Σ C 1 [ i ] ∗ x + Σ C 2 [ j ] ∗ x
移项得到:
(ΣQ1[i]ΣC1[i]x)+(ΣQ2[j]ΣC2[j]x)0 ( Σ Q 1 [ i ] − Σ C 1 [ i ] ∗ x ) + ( Σ Q 2 [ j ] − Σ C 2 [ j ] ∗ x ) ≥ 0

那么我们知道,对于第 i i 个人而言,如果要选择,
那么选择Q1[i]C1[i]x Q2[i]Q2[i]x Q 2 [ i ] − Q 2 [ i ] ∗ x 较大的那一个,是更优的
那么每次我们设
a[i] a [ i ] 表示 Q1[i]C1[i]x Q 1 [ i ] − C 1 [ i ] ∗ x
b[i] b [ i ] 表示 Q2[i]C2[i]x Q 2 [ i ] − C 2 [ i ] ∗ x
c[i] c [ i ] 表示 a[i]b[i] a [ i ] − b [ i ]
那么显然我们可以发现,当 c[i] c [ i ] 排序后,为一个递减序列的时候(即从大到小排列),
那么此时前面的选 1 1 队比选2队的更优,后面的选 2 2 队比选1队更优
此时我们设
f[i][j] f [ i ] [ j ] 表示前 i i 个人选了j个人可以得到的最大 (ΣQ1[]ΣC1[]x) ( Σ Q 1 [ ] − Σ C 1 [ ] ∗ x )
g[i][j] g [ i ] [ j ] 表示后面的人 [i..n] [ i . . n ] 选了 j j 个人可以得到的最大(ΣQ2[]ΣC2[]x)
那么当存在任意 f[i][n1]+g[i+1][n2] f [ i ] [ n 1 ] + g [ i + 1 ] [ n 2 ] 0 ≥ 0
则此时的 x x <script type="math/tex" id="MathJax-Element-7181">x</script>是有效的,继续向后二分,否则向前

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define N 505

using namespace std;

struct Node {
    double x1, x2, cd;
}a[N];
double f[N][N], g[N][N], Q1[N], C1[N], Q2[N], C2[N];
int n, n1, n2;

bool cmp(Node aa, Node bb) {
    return aa.cd > bb.cd;
}

bool Check(double x) {
    for (int i = 1; i <= n; i++) {
         a[i].x1 = Q1[i] - C1[i] * x;
         a[i].x2 = Q2[i] - C2[i] * x;
         a[i].cd = a[i].x1 - a[i].x2;
    }   
    sort(a + 1, a + n + 1, cmp);
    for (int i =  0; i <= n+1; i++) {
         f[i][0] = g[i][0] = 0;
         for (int j = 1; j <= n1; j++) f[i][j] = -1e9;
         for (int j = 1; j <= n2; j++) g[i][j] = -1e9;
    }
    for (int i = 1; i <= n; i++) 
         for (int j = 1; j <= min(i, n1); j++) f[i][j] = max(f[i-1][j], f[i-1][j-1] + (a[i].x1));

    for (int i = n; i >= 1; i--) 
         for (int j = 1; j <= min(n-i+1, n2); j++) g[i][j] = max(g[i+1][j], g[i+1][j-1] + (a[i].x2));

    for (int i = n1; i <= n-n2; i++)
         if (f[i][n1] + g[i+1][n2] >= 0) return 1;
    return 0;
}

int main() {
    freopen("love.in","r",stdin);
    freopen("love.out","w",stdout);
    scanf("%d %d %d", &n, &n1, &n2);
    for (int i = 1; i <= n; i++) 
         scanf("%lf %lf %lf %lf", &Q1[i], &C1[i], &Q2[i], &C2[i]);
    double l = 1e-8, r = 2000, ans = 0; 
    while (l <= r) {
           double mid = (l + r) / 2;
           if (Check(mid)) ans = mid, l = mid + 1e-8;
                      else r = mid - 1e-8;
    }
    printf("%.6lf\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值