Jzoj P100045 好数___思维+线段树

83 篇文章 0 订阅
35 篇文章 1 订阅

题目大意:

我们定义一个非负整数是“好数”,当且仅当它符合以下条件之一:
1.这个数是 0 0 0 1 1 1
2.所有小于这个数且与它互质的正整数可以排成一个等差数列。
给出 N N N个非负整数,然后进行如下三个操作:
1.询问区间 [ L , R ] [L,R] [L,R]有多少个好数
2.将区间 [ L , R ] [L,R] [L,R]内所有数对 S S S取余 S ≤ 1000000 S≤1000000 S1000000
3.将第 C C C个数更改为 X X X
操作数为 M M M
在这里插入图片描述

分析:

首先我们可以发现,
对于一个数而言,当且仅当是
0 0 0,② 1 1 1,③ 6 , 6, 6 2 2 2的幂次,才是好数
这个可以打表或者手丸一下就知道了
现在有一个结论,
一个数 x x x,如果 m o d mod mod上一个数 y y y,当 y ≤ x y≤x yx的时候,
显然有 x x x m o d mod mod y y y ≤ ≤ x / 2 x/2 x/2
证明的话,
前提为 y ≤ x y≤x yx
y ≤ x / 2 y≤x/2 yx/2
则显然 x x x m o d mod mod y y y ≤ ≤ y y y = > => => x x x m o d mod mod y y y ≤ ≤ x / 2 x/2 x/2
y > x / 2 y>x/2 y>x/2
则也显然 x x x m o d mod mod y y y = > => => x − y x-y xy,根据 x − ( x / 2 ) ≤ x / 2 x-(x/2)≤x/2 x(x/2)x/2可以得到 x − y ≤ x / 2 x-y≤x/2 xyx/2
那么就有 x x x m o d mod mod y y y ≤ ≤ x / 2 x/2 x/2
所以当 y ≤ x y≤x yx的时候,
显然都有 x x x m o d mod mod y y y ≤ ≤ x / 2 x/2 x/2
那么我们可以发现,对于任意一个数 x x x对它进行的有效操作至多就是 l o g 2 x log_2 x log2x次了
因为每个数都不超过 1 e 6 1e6 1e6
那么我们就可以线段树大力做,
每次维护一下区间最大值,如果模数 S > S> S>区间最大值,则这个区间的任意一个数 m o d mod mod S S S都是无效操作
然后可以了
修改呀,区间求总数和,那些就是线段树的经典操作了吧

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
#include <algorithm>

#define lson(x) x * 2 
#define rson(x) x * 2 + 1
#define M 1000005
#define N 100005

using namespace std;

struct Node { int MaxNum, total; }tree[5*N];
int prime[N], A[N], n, m, cnt, Sum_total;
bool good[M];

void read(int &x)
{
	int f = 1; x = 0; char s = getchar();
	while (s < '0' || s > '9')   { if (s == '-')  f = - 1; s = getchar(); }
	while (s >= '0' && s <= '9') { x = x * 10 + (s - '0'); s = getchar(); }
	x = x * f;
}

void Pre_Work()
{
    for (int i = 0; i <= 1000000; i++) good[i] = 1;	
	for (int i = 2; i <= 1000000; i++)
	{
		if (good[i]) prime[++cnt] = i, good[i] = 1;
		for (int j = 1; j <= cnt; j++)
		{
			if (i * prime[j] > 1000000) break;
			good[i * prime[j]] = 0;
			if (i % prime[j] == 0) break;
		}
	}
	int x = 1;
    for (; x <= 1000000; x <<= 1) good[x] = 1;
	good[6] = 1;
}

void Update(int G)
{
    tree[G].MaxNum = max(tree[lson(G)].MaxNum, tree[rson(G)].MaxNum);
	tree[G].total = tree[lson(G)].total + tree[rson(G)].total;
}

void Build(int G, int l, int r)
{
    if (l == r)
	{
		if (good[A[l]]) tree[G].total = 1; else tree[G].total = 0;
		tree[G].MaxNum = A[l];
		return;
	}
	int mid = (l + r) >> 1;
	Build(lson(G), l, mid);
	Build(rson(G), mid + 1, r);
	Update(G);	
}

void Get_Sum(int G, int l, int r, int x, int y)
{
	if (l == x && r == y)
	{
		Sum_total += tree[G].total;
		return;
	}
	int mid = (l + r) >> 1;
	if (y <= mid) Get_Sum(lson(G), l, mid, x, y);
	   else if (x > mid) Get_Sum(rson(G), mid + 1, r, x, y); 
	           else 
	           {
	           	    Get_Sum(lson(G), l, mid, x, mid);
	           	    Get_Sum(rson(G), mid + 1, r, mid + 1, y);
			   }
}

void Change_wxy(int G, int l, int r, int x, int y, int modn)
{
	if (l == r)
	{
		A[l] = A[l] % modn;
		tree[G].MaxNum = A[l];
	    if (good[A[l]]) tree[G].total = 1; else tree[G].total = 0;
		return;
	}
	int mid = (l + r) >> 1;
	if (l == x && r == y)
	{
		if (tree[G].MaxNum < modn) return;
		Change_wxy(lson(G), l, mid, x, mid, modn);
		Change_wxy(rson(G), mid + 1, r, mid + 1, y, modn);
		Update(G);
		return;
	} 
	if (y <= mid) Change_wxy(lson(G), l, mid, x, y, modn);
	   else if (x > mid) Change_wxy(rson(G), mid + 1, r, x, y, modn); 
	           else 
	           {
	           	    Change_wxy(lson(G), l, mid, x, mid, modn);
	           	    Change_wxy(rson(G), mid + 1, r, mid + 1, y, modn);
			   }
	Update(G);	
}

void Change_yzh(int G, int l, int r, int id, int num)
{
	if (l == r)
    {
    	A[l] = num;
		tree[G].MaxNum = A[l];
	    if (good[A[l]]) tree[G].total = 1; else tree[G].total = 0;		
	    return;
	}
	int mid = (l + r) >> 1;
	if (id <= mid) Change_yzh(lson(G), l, mid, id, num);
	   else if (id > mid) Change_yzh(rson(G), mid + 1, r, id, num); 
	Update(G);
}

int main()
{
	Pre_Work();
	read(n); read(m);
	for (int i = 1; i <= n; i++) read(A[i]);
	Build(1, 1, n);
	int opt, l, r, x, modn;
	while (m--)
	{
	    read(opt);	
	    if (opt == 1) 
		{ 
		    read(l); read(r); Sum_total = 0;
			Get_Sum(1, 1, n, l, r);
			printf("%d\n", Sum_total); 
		}
		if (opt == 2)
		{
			read(l); read(r); read(modn);
			Change_wxy(1, 1, n, l, r, modn);
		}
		if (opt == 3)
		{
			read(l); read(x);
			Change_yzh(1, 1, n, l, x);
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值