Bzoj P1191 [HNOI2006]超级英雄Hero___网络流

题目大意:

n n n个(从 0 0 0开始标号)锦囊, m m m个问题,每个问题可以被 2 2 2种锦囊帮助秒杀( 2 2 2种锦囊可能为相同锦囊),每个锦囊仅能使用一次,第 i i i个问题需要第 i − 1 i-1 i1个问题被解决后才能被回答 i ∈ [ 0 , n ) i∈[0,n) i[0,n),问最多利用锦囊解决多少个问题。

0 &lt; n &lt; 1001 , 0 &lt; m &lt; 1001 0 &lt; n &lt;1001,0 &lt; m &lt; 1001 0<n<1001,0<m<1001

分析:

好坑,一开始没看到要前 i − 1 i-1 i1个问题都通过才能继续第 i i i个,然后就炸了
然后这题其实就是每次加边以后求有没有完备匹配即可, n , m n,m n,m比较小,采用匈牙利,网络流都可以做。
网络流的话,
就是 S − &gt; S-&gt; S>所有的锦囊,最大流量为 1 1 1
锦囊 − &gt; -&gt; >对应能解决的问题,最大流量为 i n f inf inf
问题 − &gt; -&gt; >T,做大流量为 1 1 1
然后最大流

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
#include <vector>
#include <algorithm>
 
#define inf 0x3f3f3f3f
#define N 1005
 
using namespace std;
 
struct Node { int To, w, nxt; }e[N*15];
int ls[N*2], dis[N*2], n, m, cnt = 1, S, T, maxflow;
 
void Addedge(int u, int v, int w)
{
    e[++cnt].To = v, e[cnt].w = w, e[cnt].nxt = ls[u], ls[u] = cnt;
    e[++cnt].To = u, e[cnt].w = 0, e[cnt].nxt = ls[v], ls[v] = cnt;
}
 
queue <int> Q;
 
bool bfs()
{
    for (int i = S; i <= T; i++) dis[i] = 0;
    while (Q.size()) Q.pop();
    Q.push(S), dis[S] = 1; 
    while (!Q.empty())
    {
        int u = Q.front(); Q.pop();
        for (int i = ls[u]; i; i = e[i].nxt)
            if (!dis[e[i].To] && e[i].w) 
            {
                dis[e[i].To] = dis[u] + 1;
                if (e[i].To == T) return 1;
                Q.push(e[i].To);   
            }
    } 
    return 0;
}
 
int dfs(int u, int flow)
{
    if (u == T) return flow;
    int rest = flow;
    for (int i = ls[u]; i && rest; i = e[i].nxt)
        if (dis[e[i].To] == dis[u] + 1 && e[i].w)
        {
            int rp = dfs(e[i].To, min(rest, e[i].w));
            if (!rp) dis[e[i].To] = 0;
            e[i].w -= rp;
            e[i^1].w += rp;
            rest -= rp;
        }
    return flow - rest;
}
 
void dinic()
{
    int flow;
    while (bfs())
        while (flow = dfs(S, inf)) maxflow += flow;
}
 
int main()
{
    scanf("%d %d", &n, &m); ++n;
    S = 0, T = n + m + 1;
    for (int i = 1; i <= n; i++) Addedge(S, i, 1);
    for (int i = 1; i <= m; i++) Addedge(n + i, T, 1);   
    for (int i = 1; i <= m; i++)
    {
        int x, y; scanf("%d %d", &x, &y);
        Addedge(x + 1, n + i, inf);
        if (y != x) Addedge(y + 1, n + i, inf);
        dinic();
        if (maxflow < i) 
        {
            printf("%d\n", maxflow);
            return 0;
        }
    }
    printf("%d\n", m);
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值