Jzoj P4237 Melancholy___线段树+动态规划

127 篇文章 0 订阅
35 篇文章 1 订阅

题目大意:

n n n个点,每个点有二个关键字 ( a i , b i ) (a_i,b_i) (ai,bi)
Q Q Q个询问,每个询问给出一组 ( L , R , K ) (L,R,K) (L,R,K)
在所有满足 L ≤ a i ≤ R L≤a_i≤R LaiR的点去掉 b i b_i bi最小的一个点,有多个只去掉其中一个,然后任选 K K K个,将对应 b i b_i bi相乘,累加乘积,不同顺序为不同的选择方案,问所有方案数的对应乘积的和对 2 3 2 2^32 232取模以后的结果是多少,如果点数不足 K K K个则回答 0 0 0

1 ≤ n , Q ≤ 1 0 5 , 1 ≤ L ≤ R ≤ 1 0 9 , 1 ≤ k ≤ 6 , 1 ≤ a i , b i ≤ 1 0 9 1≤n,Q≤10^5,1≤L≤R≤10^9,1≤k≤6,1≤a_i,b_i≤10^9 1n,Q105,1LR109,1k6,1ai,bi109

分析:

这题对 p a s c a l pascal pascal选手貌似很不友好,因为 p a s c a l pascal pascal没有 u n s i g n e d unsigned unsigned i n t int int,要用常数比较大的 i n t 64 int64 int64还要取模一下,所以貌似很容易 T T T
这题要怎么做的,貌似有人直接对 k k k下手,暴力手推容斥,还有人莫队水过
我打的是线段树的做法,
n n n个点按 a i a_i ai为第一关键字升序排列,设升序序列为 c i c_i ci,对应 b i b_i bi也要注意跟着换位置
对于一个询问限制 [ L , R ] [L,R] [L,R]以及选择个数 K K K
我们求出最大的满足限制 [ L , R ] [L,R] [L,R]的在 c c c中的区间 [ x , y ] [x,y] [x,y]
这个可以用二分, l o w e r lower lower b o u n d bound bound u p p e r upper upper b o u n d bound bound求出,
那么我们可以用线段树去 O ( l o g n ) O(logn) O(logn)的求出区间的最小值 m i n min min,以及对应位置 p o s pos pos
接着我们对线段树的每个节点都建一个 f i f_i fi,表示在其所控制的区间中按顺序依次选了 i i i个数的方案总数的对应乘积的和是多少。
然后假如左区间依次选了 j j j个数的方案对应的乘积有
a 1 , a 2 , . . . , a x − 1 , a x a1,a2,...,a_{x-1},a_x a1,a2,...,ax1,ax, f j = ∑ i = 1 x a i f_j=\sum_{i=1}^{x}a_i fj=i=1xai
右区间依次选了 k k k个数的方案对应的乘积有
b 1 , b 2 , . . . , b y − 1 , b y b1,b2,...,b_{y-1},b_y b1,b2,...,by1,by, f k = ∑ i = 1 y b i f_k=\sum_{i=1}^{y}b_i fk=i=1ybi
2 2 2 f [ ] f_{[]} f[]是在不同的节点中,即 l s o n lson lson r s o n rson rson中,
然后他们对 f a t h e r father father中的 f [ ] f_{[]} f[]的贡献,
就是
f j + = f j f_{j}+=f_{j} fj+=fj,前者在 f a t h e r father father中,后者在 l s o n lson lson
f k + = f k f_{k}+=f_{k} fk+=fk,前者在 f a t h e r father father中,后者在 r s o n rson rson

f k + j + = ( a 1 b 1 + a 1 b 2 + , . . . , + a 1 b y ) + f_{k+j}+=(a1b1+a1b2+,...,+a1b_y)+ fk+j+=(a1b1+a1b2+,...,+a1by)+
( a 2 b 1 + a 2 b 2 + , . . . , + a 2 b y ) + , . . . , + ( a x b 1 + a x b 2 + , . . . , + a x b y ) (a2b1+a2b2+,...,+a2b_y)+,...,+(a_xb1+a_xb2+,...,+a_xb_y) (a2b1+a2b2+,...,+a2by)+,...,+(axb1+axb2+,...,+axby)
等价于
f k + j + = ( a 1 + a 2 + , . . . , a x − 1 , a x ) ∗ ( b 1 + b 2 + , . . . , b y − 1 + b y ) f_{k+j}+=(a1+a2+,...,a_{x-1},a_x)*(b1+b2+,...,b_{y-1}+b_{y}) fk+j+=(a1+a2+,...,ax1,ax)(b1+b2+,...,by1+by)

f k + j + = f j ∗ f k f_{k+j}+=f_{j}*f_{k} fk+j+=fjfk
那么一个区间内的 f [ ] f_{[]} f[]就可以在 O ( k 2 ) O(k^2) O(k2)的时间内得到,
建这颗线段树就是 O ( k 2 n l o g n ) O(k^2nlogn) O(k2nlogn)
然后我们一开始是得到了最小值的位置 p o s pos pos
那么我们就可以 O ( l o g n ) O(logn) O(logn)的知道 [ x , p o s − 1 ] [x,pos-1] [x,pos1] [ p o s + 1 , y ] [pos+1,y] [pos+1,y] f [ ] f_{[]} f[]情况,
然后将这两者结合一下,
得到的 f K f_{K} fK就是区间 [ x , y ] [x,y] [x,y]除去最小的 b i b_i bi以后依次选 K K K个数的方案对应的乘积的和。
然后因为题目中规定顺序不同为不同的方案数,
所以一个长度为 K K K的方案可以通过不同的排列进而有 K ! K! K!种方案,
所以答案为 f K ∗ K ! f_{K}*K! fKK!

代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <queue>
#include <cstring>
#include <algorithm>

#define lson(x) x * 2
#define rson(x) x * 2 + 1

#define N 100005

using namespace std;

typedef unsigned int usg;

const usg inf = 0x3f3f3f3f;

struct Node { usg total[7], minnum, minpos; }C[N*5], Answer;
struct Oier { usg d, v; }a[N];
usg b[N], n, Q, minnumpos;

void read(usg &x)
{
    usg f = 1; x = 0; char s = getchar();
	while (s < '0' || s > '9')   { if (s == '-') f = - 1;  s = getchar(); }
	while (s >= '0' && s <= '9') { x = x * 10 + (s - '0'); s = getchar(); }	
    x = x * f;
} 

bool cmp(Oier aa, Oier bb) 
{ 
    return aa.d < bb.d;
}

Node Update(Node x, Node y)
{
	Node z;
    for (usg i = 1; i <= 6; i++) z.total[i] = x.total[i] + y.total[i];
    for (usg i = 1; i <= 6; i++)
        for (usg j = 1; j < i; j++)
            z.total[i] += x.total[j] * y.total[i - j];
    return z; 
}

void Build(usg x, usg l, usg r)
{
    for (usg i = 1; i <= 6; i++) C[x].total[i] = 0;
    if (l == r)
    {
        C[x].total[1] = a[l].v;
        C[x].minnum = a[l].v;
        C[x].minpos = l;
        return;
    }
    usg mid = (l + r) >> 1;
    Build(lson(x), l, mid); 
	Build(rson(x), mid + 1, r);
    C[x] = Update(C[lson(x)], C[rson(x)]);
	C[x].minnum = min(C[lson(x)].minnum, C[rson(x)].minnum);
	if (C[x].minnum == C[lson(x)].minnum) C[x].minpos = C[lson(x)].minpos; else C[x].minpos = C[rson(x)].minpos;
}


void Get_minpos(usg x, usg l, usg r, usg L, usg R)
{
    if (L > R) return;
    if (L <= l && r <= R)
    {
        if (a[minnumpos].v > C[x].minnum) minnumpos = C[x].minpos; 
        return;
    }
    int mid = (l + r) >> 1;
    if (L <= mid) Get_minpos(lson(x), l, mid, L, R);
    if (mid + 1 <= R) Get_minpos(rson(x), mid + 1, r, L, R);
}

void Query(usg x, usg l, usg r, usg L, usg R)
{
     if (L > R) return;
     if (L <= l && r <= R)
     {
         Answer = Update(Answer, C[x]); 
         return;
    }
    int mid = (l + r) >> 1;
    if (L <= mid) Query(lson(x), l, mid, L, R);
    if (mid + 1 <= R) Query(rson(x), mid + 1, r, L, R);
}

void Work(usg num1, usg num2, usg k)
{
    usg L = lower_bound(b, b + n + 1, num1) - b;
    usg R = upper_bound(b, b + n + 1, num2) - b - 1;
    if (L > R || R - L < k) { printf("0\n"); return; }
	minnumpos = 0;
    Get_minpos(1, 1, n, L, R);
    for (usg i = 1; i <= 6; i++) Answer.total[i] = 0; 
    Query(1, 1, n, L, minnumpos - 1);
    Query(1, 1, n, minnumpos + 1, R);
    for (usg i = 1; i <= k; i++) Answer.total[k] *= i;
	printf("%u\n", Answer.total[k]);
}

int main()
{
    read(n); read(Q);
    for (usg i = 1; i <= n; i++) read(a[i].d);
    for (usg i = 1; i <= n; i++) read(a[i].v);
    sort(a + 1, a + n + 1, cmp);
    for (usg i = 1; i <= n; i++) b[i] = a[i].d;
	a[0].v = inf;
	Build(1, 1, n);    
    while (Q--)
    {
        usg L, R, k; 
		read(L); read(R); read(k);
        Work(L, R, k);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值