题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有 33 种果子,数目依次为 11 , 22 , 99 。可以先将 11 、 22 堆合并,新堆数目为 33 ,耗费体力为 33 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212 ,耗费体力为 1212 。所以多多总共耗费体力 =3+12=15=3+12=15 。可以证明 1515 为最小的体力耗费值。
输入格式
共两行。
第一行是一个整数 n(1≤n≤10000) ,表示果子的种类数。
第二行包含 nn 个整数,用空格分隔,第 i 个整数 ai
是第 i种果子的数目。
输出格式
一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^{31}2
31
。
输入输出样例
输入 #1复制
3
1 2 9
输出 #1复制
15
说明/提示
对于30%的数据,保证有n≤1000:
对于50%的数据,保证有n≤5000;
对于全部的数据,保证有n≤10000。
要体力最小,很容易想到每次只和数目最少的两堆果子,所以每次合完两堆果子就就行一次排序,而优先队列就有这个特性,因此可以用优先队列来做。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
using namespace std;
int n;
int a,s=0;
int main(){
priority_queue<int,vector<int>, greater<int> >q;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a;
q.push(a);
}
for(int i=1;i<n;i++){//n堆果子,只需要合并n-1次
a=q.top();
q.pop();
a+=q.top();
q.pop();
s+=a;
q.push(a);
}
cout<<s<<endl;
return 0;
}