摘要:
目标检测是计算机视觉领域的重要任务之一,而YOLOV5作为一种先进的目标检测算法,在实时性和准确性方面表现出色。为了进一步提升YOLOV5的性能,研究人员在顶级期刊TIP发表了一篇研究论文,提出了一种即插即用的多尺度融合模块,有效提升了YOLOV5的性能。本文将详细介绍这个改进的模块,并提供相应的源代码。
引言:
在目标检测任务中,多尺度信息的利用对于提高模型性能至关重要。然而,传统的目标检测算法在多尺度信息的融合上存在一定的局限性。为了克服这一问题,研究人员设计了一种新颖的多尺度融合模块,该模块可以无缝地嵌入到YOLOV5中,提升模型的性能。
多尺度融合模块:
多尺度融合模块的设计基于特征金字塔网络(Feature Pyramid Network,FPN)。该模块接收来自不同尺度特征层的特征图,并通过一系列的操作将它们融合到一起。具体而言,模块包括以下步骤:
- 特征金字塔网络(FPN):通过在不同层级上构建特征金字塔,生成多尺度的特征图。这些特征图具有不同的感受野,可以提取不同尺度的目标信息。
# FPN代码示例