【leetcode详解】心算挑战: 一题搞懂涉及奇偶数问题的 “万金油” 思路(思路详解)

前记: 

做了几日的leetcode每日一题,几乎全是十分钟结束战斗的【中等】题,今日杀出来个【简单】题,反倒开始难以想出很清楚的解题思路,反复调试修改才将题目逐渐考虑全面,看到了原本思路的漏洞,于是重新思考,方逐渐明了。

Tips for 涉及奇偶数的问题:

0. 基本思想:奇数 = 奇数 + 偶数; 此外,两数之和均为偶数

1. 由此延伸出:要使和为偶数,奇数要“一对对”地往上加(即至少2个),偶数数量上就任意

2. 基于上述讨论,我们就得到了涉及奇偶数问题的 “万金油” 式思路:转偶数

具体来说:

        要使结果和为偶数,那就先将数的个数(本题中cnt)转为偶数,这样便于后面奇数一对对地往上加,简化讨论(推荐参考下面本题思路详解食用 ~)

        要使结果和为奇数,那就转化为 “一个奇数+偶数” 的问题(从而转化为了和为偶数的问题)

思路详解:

1. 将奇偶数放到两个数组中并分别排序,分开讨论:

int maxmiumScore(vector<int>& cards, int cnt) {
		vector<int>ji; vector<int>ou;
		for(int i=0; i<cards.size(); i++)
		{
			if(cards[i]%2 == 0)
			{
				ou.push_back(cards[i]);
			}
			else{
				ji.push_back(cards[i]);
			}
		}
		sort(ou.begin(), ou.end());
		sort(ji.begin(), ji.end());
}

2. 若cnt初始为奇数,则转化为偶数

int k = ou.size()-1;
if(cnt%2 == 1)//若cnt初始为奇数
{
	cnt--;
	if(k>=0) re+=ou[k--];//最大偶数一定在被抽的卡里面
	else return 0;
} //保证当前cnt一定是偶数

 3. 遍历直到cnt=0或出现异常(return 0)

for循环遍历的内层分解:

3.1 特殊情况单独讨论

if(i < 0)//特殊情况单独讨论
{
	if(k+1 < cnt) return 0;
	else{
		re += ou[k]; k--; cnt--; continue;
	}
}
else if(k < 0)//特殊情况单独讨论
{
	if(cnt%2 == 1 || cnt > i+1) return 0;
	else
	{
		re+=(ji[i]+ji[i-1]);
		cnt-=2; i-=2; continue;
	}
}

3.2 因为抽卡数目(cnt)有限,且奇数牌只能一对一对抽,所以需要判断抽一对奇数牌和抽一对偶数牌谁的增值大

if(i >= 1)//奇数数组至少剩余两个元素
{
	if(k >= 1)//偶数数组至少剩余两个元素
	{
		if(ou[k]+ou[k-1] <= ji[i]+ji[i-1])
		{
			re+=(ji[i]+ji[i-1]);
			cnt-=2; i-=2;
		}
		else{
			re+=(ou[k]+ou[k-1]);
			cnt-=2; k-=2;
		}
	}
	else{
		re+=(ji[i]+ji[i-1]);
		cnt-=2; i-=2;
	}
}
else if(k >= 1){//奇数数组剩余元素个数<1
	re+=(ou[k]+ou[k-1]);
	cnt-=2; k-=2;
}
else{//i,k == 1
	return 0;
}

 AC代码见下 ~

class Solution {
public:
    int maxmiumScore(vector<int>& cards, int cnt) {
		vector<int>ji; vector<int>ou;
		for(int i=0; i<cards.size(); i++)
		{
			if(cards[i]%2 == 0)
			{
				ou.push_back(cards[i]);
			}
			else{
				ji.push_back(cards[i]);
			}
		}
		sort(ou.begin(), ou.end());
		sort(ji.begin(), ji.end());//保证从小到大排列
		int re = 0;
		int i = ji.size()-1;
		int k = ou.size()-1;
		
		if(cnt%2 == 1)//若cnt初始为奇数
		{
			cnt--;
			if(k>=0) re+=ou[k--];
			else return 0;
		} //保证当前cnt一定是偶数
		
		for(; cnt>0 ; )
		{
			if(i < 0)//特殊情况单独讨论
			{
				if(k+1 < cnt) return 0;
				else{
					re += ou[k]; k--; cnt--; continue;
				}
			}
			else if(k < 0)//特殊情况单独讨论
			{
				if(cnt%2 == 1 || cnt > i+1) return 0;
				else
				{
					re+=(ji[i]+ji[i-1]);
					cnt-=2; i-=2; continue;
				}
			}
			
			if(i >= 1)//奇数数组至少剩余两个元素
			{
				if(k >= 1)//偶数数组至少剩余两个元素
				{
					if(ou[k]+ou[k-1] <= ji[i]+ji[i-1])
					{
						re+=(ji[i]+ji[i-1]);
						cnt-=2; i-=2;
					}
					else{
						re+=(ou[k]+ou[k-1]);
						cnt-=2; k-=2;
					}
				}
				else{
					re+=(ji[i]+ji[i-1]);
					cnt-=2; i-=2;
				}
			}
			else if(k >= 1){//奇数数组剩余元素个数<1
				re+=(ou[k]+ou[k-1]);
				cnt-=2; k-=2;
			}
			else{//i,k == 1
				return 0;
			}
		}
		return re;
    }
};

~希望对你有启发~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值