最近最少使用(LRU)缓存淘汰算法

}

链表节点类:

要存储的信息:

值、下一个节点

package base;

public class Node {

public int val;

public Node next;

public Node(int v) {

this.val = v;

}

public Node(int v, Node next) {

this.val = v;

this.next = next;

}

}

单向链表类:

设置一个虚拟头节点、属性size记录链表长度

public Node head;

// 链表元素数

private int size;

public SingleList() {

// 初始化双向链表的数据

head = new Node(-1);

head.next = null;

size = 0;

}

提供添加元素的方法:

/**

  • 在第index处插入元素e

  • @param index

  • @param e

*/

public void add(int index, int e){

if (index < 0 || index > size)

throw new IllegalArgumentException(“Add failed. Illegal index.”);

Node prev = head;

for (int i = 0; i < index; i ++){

prev = prev.next;

}

prev.next = new Node(e, prev.next);

size ++;

}

// 在链表尾部添加节点 x

public void addLast(Node x) {

add(size, x.val);

}

// 在链表头部添加节点 x

public void addFirst(Node x) {

add(0, x.val);

}

提供删除元素的方法:

  • 根据索引删除

// 从链表中删除index处的元素

public Node remove(int index){

if (index < 0 || index > size)

throw new IllegalArgumentException(“Set failed. Illegal index.”);

Node prev = head;

for (int i = 0; i < index; i++) {

prev = prev.next;

}

Node retNode = prev.next;

prev.next = retNode.next;

retNode.next = null;

size --;

return retNode;

}

  • 删除传入节点

// 删除节点x

public void remove(Node x){

Node pre = head;

Node node = head.next;

while (node != null){

if (node == x){

pre.next = node.next;

node.next = null;

}

node = node.next;

pre = pre.next;

}

}

  • 删除第一或最后一个元素

/**

  • 删除最后一个节点

  • @return

*/

public Node removeLast() {

return remove(size - 1);

}

/**

  • 删除第一个节点

  • @return

*/

public Node removeFirst(){

return remove(0);

}

提供根据数值寻找节点的方法:

/**

  • 根据值寻找节点

  • @param val

  • @return

*/

public Node findByValue(int val){

Node node = head;

while (node != null){

if (node.val == val){

return node;

}

node = node.next;

}

return null;

}

LRU缓存算法类:

用链表的底层来实现缓存,构造函数传入初始容量

public class LRUCache {

private SingleList cache;

private int cap; // 最大容量

public LRUCache(int capacity) {

this.cap = capacity;

cache = new SingleList();

}

}

将某个val提升为最近使用的:

private void makeRecently(int val) {

Node x = cache.findByValue(val);

// 先从链表中删除这个节点

cache.remove(x);

// 重新插到队头

cache.addFirst(x);

}

添加最近使用的val:

private void addRecently(int val) {

Node x = new Node(val);

// 链表头部就是最近使用的元素

cache.addFirst(x);

}

删除某一个val:先找到对应节点,然后删除

private void deleteVal(int val) {

Node x = cache.findByValue(val);

// 从链表中删除

cache.remove(x);

}

删除最久未使用的val:

private void removeLeastRecently() {

// 链表尾部元素就是最久未使用的

cache.removeLast();

}

使用缓存中的某个数据:

public Node get(int val) {

Node x = cache.findByValue(val);

if (x == null){

return null;

}

// 将该数据提升为最近使用的

makeRecently(val);

return x;

}

放入新数据:如果缓存已经满了则需要删除最久未使用的

public void put(int val) {

if (cache.findByValue(val) != null) {

// 删除旧的数据

deleteVal(val);

// 新插入的数据为最近使用的数据

addRecently(val);

return;

}

if (cap == cache.size()) {

// 删除最久未使用的元素

removeLeastRecently();

}

// 添加为最近使用的元素

addRecently(val);

}

打印方法:

public void printCache(){

Node pointer = cache.head;

while (pointer != null){

System.out.print(“[” + pointer.val + “] ->”);

pointer = pointer.next;

}

System.out.println();

}

*3.1 优化


我们可以继续优化这个实现思路,比如引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。这里缓存改为存储键值对了,其实上面的单向链表的每个Node也可以存储两个值,key和value,有兴趣的同学们可以自己尝试一下

如果想让 put 和 get 方法的时间复杂度为 O(1),我们可以尝试总结以下几点:

  1. cache 中的元素存储时必须能体现先后顺序,以区分最近使用的和久未使用的数据;

  2. 要在 cache 中快速找某个 key 是否存在并得到对应的 val

  3. 每次访问 cache 中的值,需要将其变为最近使用的,即,要支持在任意位置快速插入和删除元素。

哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。

所以,结合一下,用哈希链表

实际上LRU算法的核心数据结构就是哈希链表,长这样:

再看上面的条件:

  1. 同单链表的情况相同,如果从头部插入元素,显然越靠近尾部的元素是最久未使用的。(当然反过来也成立);

  2. 对于一个key,可以通过HashTable快速查找到val;

  3. 链表显然是支持在任意位置快速插入和删除的。只不过传统的链表查找元素的位置较慢,而这里借助哈希表,通过 key快速映射到一个链表节点,然后进行插入和删除。

这次我们从尾部插入,从头部删除~

双向链表的节点类Node:

只增加了一个指向上一个节点的指针 Node pre

class Node {

public int key, val;

public Node next, prev;

public Node(int k, int v) {

this.key = k;

this.val = v;

}

}

依靠实现的节点类Node给出双向链表的实现:

构造方法初始化头尾虚节点,链表元素个数

class DoubleList {

// 头尾虚节点

public Node head, tail;

// 链表元素数

private int size;

public DoubleList() {

// 初始化双向链表的数据

head = new Node(0, 0);

tail = new Node(0, 0);

head.next = tail;

tail.prev = head;

size = 0;

}

}

在尾部添加节点的方法:

// 在链表尾部添加节点 x,时间 O(1)

public void addLast(Node x) {

x.prev = tail.prev;

x.next = tail;

tail.prev.next = x;

tail.prev = x;

size++;

}

删除节点x的方法:

删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,双向链表由于有pre指针的存在所以删除操作的时间复杂度为O(1)

// 删除链表中的 x 节点(x 一定存在)

// 由于是双链表且给的是目标 Node 节点,时间 O(1)

public void remove(Node x) {

x.prev.next = x.next;

x.next.prev = x.prev;

size–;

}

删除链表第一个节点的方法:

// 删除链表中第一个节点,并返回该节点,时间 O(1)

public Node removeFirst() {

if (head.next == tail)

return null;

Node first = head.next;

remove(first);

return first;

}

LRU缓存算法类:

有了双向链表的实现,我们只需要在 LRU 算法中把它和哈希表结合起来即可

构造方法:

class LRUCache {

// key -> Node(key, val)

private HashMap<Integer, Node> map;

// Node(k1, v1) <-> Node(k2, v2)…

private DoubleList cache;

// 最大容量

private int cap;

public LRUCache(int capacity) {

this.cap = capacity;

map = new HashMap<>();

cache = new DoubleList();

}

}

接下来先设计一些辅助函数,用于随后进行操作的:

将某个值设置为最近使用的:

private void makeRecently(int key) {

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

笔者已经把面试题和答案整理成了面试专题文档

image

image

image

image

image

image

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
-1712957963889)]

[外链图片转存中…(img-L5igxlQH-1712957963889)]

[外链图片转存中…(img-kXmqgy1k-1712957963890)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

笔者已经把面试题和答案整理成了面试专题文档

[外链图片转存中…(img-8IV12ZXw-1712957963890)]

[外链图片转存中…(img-yghx9kkw-1712957963890)]

[外链图片转存中…(img-EuPqjrmo-1712957963891)]

[外链图片转存中…(img-lZAf2X93-1712957963891)]

[外链图片转存中…(img-Sv7Oo1oM-1712957963892)]

[外链图片转存中…(img-9dIdDpob-1712957963892)]

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值