使用yolov5训练模型

本文介绍了如何从GitHub获取Yolov5资源,准备数据集(包括图片、labels和dataset),使用工具如labelimg进行标注,以及编写split.py和xml_to_txt.py脚本来划分数据集和转换XML标签为txt。最后指导如何配置myvoc.yaml并启动训练过程。
摘要由CSDN通过智能技术生成

一、下载使用yolov5资源

在GitHub中直接搜索yolov5下载

二、准备原始数据

找到data文件夹,在data下新建images,将要用来训练的图片放到images文件夹中

同时在data下新建labels和dataset

三、标注数据

打开终端,输入命令labelimg打开标注工具(未下载labelimg需要先执行pip install labelimg安装labelimg)

选择自动保存

点击Changs save Dir,设置标注保存到dstaset

点击Open Dir选择imades打开图片

按W左击不松鼠标拖动鼠标进行框选,松开鼠标框选完

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值