解题思路:
- 使用深度优先搜索(DFS,通过递归实现)遍历所有可能的皇后摆放位置。
- 通过四个数组a[]、b[]、c[]和d[]来标记当前位置是否已经放置了皇后,以避免冲突。
数组的作用:
a[200]:主要数组,用于记录每一步在第几列放置了皇后,即实际存放皇后的列位置。a[step] = i; 表示在第step行的第i列放置皇后。
b[200]:标记某列是否已经放置了皇后。b[i] = 1; 表示第i列已经放置了皇后,避免同一列重复放置。回溯时b[i] = 0; 重置状态。
c[200]:用于标记主对角线上的位置是否已被占据。因为从左上到右下的主对角线上的任意两个格子的行号与列号之和是固定的,所以使用c[step + i]来记录。当在第step行第i列放置皇后时,将c[step + i] = 1;,回溯时重置。
d[200]:用于标记副对角线上的位置是否已被占据。副对角线上的任意两个格子的行号与列号之差是固定的,因此使用d[step - i + n] = 1;来标记。
核心代码如下 :
代码流程:
- 主函数main():接收用户输入的皇后数量
n
,调用dfs(1)
开始递归搜索,最后输出总共有多少种解法(即sum
的值)。 - dfs函数:
- 递归终止条件:当递归深度
step
超过n
时,说明找到了一种解,sum++
计数,最多输出前三种解。 - 递归过程:对于每一行,尝试在每一列放置皇后,并检查是否与之前放置的皇后冲突(通过
b[]
、c[]
、d[]
判断),若不冲突,则放置皇后并继续深入到下一行;否则,尝试下一个列。在回溯时,需要撤销当前选择,恢复b[]
、c[]
、d[]
的状态,以便探索其他可能性。
- 递归终止条件:当递归深度
完整代码如下:
import java.util.Scanner; public class Main { static int n = 0, sum = 0; static int[] a = new int[200]; static int[] b = new int[200]; static int[] c = new int[200]; static int[] d = new int[200]; public static void main(String[] args) { Scanner scanner = new Scanner(System.in); n = scanner.nextInt(); queen(1); System.out.println(sum); } public static void queen(int step) { if (step > n) { sum++; if (sum <= 3) { for (int h = 1; h <= n; h++) { System.out.print(a[h]+" "); } System.out.println(); } } else { for (int i = 1; i <= n; i++) { if (b[i] == 0 && c[step + i] == 0 && d[step - i + n] == 0) { a[step] = i; b[i] = 1; c[i + step] = 1; d[step - i + n] = 1; queen(step + 1); b[i] = 0; c[i + step] = 0; d[step - i + n] = 0; } } } } }