1、为什么要使用数据库
持久化(persistence):把数据保存到可掉电式存储设备中以供之后使用。大多数情况下,特别是企业级应用,数据持久化意味着将内存中的数据保存到硬盘上加以”固化”,而持久化的实现过程大多通过各种关系数据库来完成。
持久化的主要作用是将内存中的数据存储在关系型数据库中,当然也可以存储在磁盘文件、XML数据文件中。
2、数据库管理系统
2.1、数据库的相关概念
数据库(database)
数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。
所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合
数据库管理系统
数据库管理系统(Database Management System,简称DBMS)是为管理数据库而设计的电脑软件系统,一般具有存储、截取、安全保障、备份等基础功能
2.2、数据库与数据库管理系统的关系
数据库管理系统(DBMS)可以管理多个数据库,一般开发人员会针对每一个应用创建一个数据库。为保存应用中实体的数据,一般会在数据库创建多个表,以保存程序中实体用户的数据。
数据库管理系统、数据库和表的关系如图所示:
MySQL介绍
3.1、概述
MySQL是一个 开放源代码的关系型数据库管理系统 ,由瑞典MySQL AB(创始人Michael Widenius)公司1995年开发,迅速成为开源数据库的 No.1。
2008被 Sun 收购(10亿美金),2009年Sun被 Oracle 收购。 MariaDB 应运而生。(MySQL 的创造者担心 MySQL 有闭源的风险,因此创建了 MySQL 的分支项目 MariaDB)
MySQL6.x 版本之后分为 社区版 和 商业版 。
MySQL是一种关联数据库管理系统,将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
MySQL是开源的,所以你不需要支付额外的费用。
MySQL是可以定制的,采用了 GPL(GNU General Public License) 协议,你可以修改源码来开发自己的MySQL系统。
MySQL支持大型的数据库。可以处理拥有上千万条记录的大型数据库。
MySQL支持大型数据库,支持5000万条记录的数据仓库,32位系统表文件最大可支持 4GB ,64位统支持最大的表文件为 8TB 。
MySQL使用 标准的SQL数据语言 形式。
MySQL可以允许运行于多个系统上,并且支持多种语言。这些编程语言包括C、C++、Python、Java、Perl、PHP和Ruby等。
3.2、MySQL发展史
MySQL的历史就是整个互联网的发展史。互联网业务从社交领域、电商领域到金融领域的发展,推动着应用对数据库的需求提升,对传统的数据库服务能力提出了挑战。高并发、高性能、高可用、轻资源、易维护、易扩展的需求,促进了MySQL的长足发展。
3.2.1、关于MySQL8.0版本
MySQL从5.7版本直接跳跃发布了8.0版本 ,可见这是一个令人兴奋的里程碑版本。MySQL 8版本在功能上做了显著的改进与增强,开发者对MySQL的源代码进行了重构,最突出的一点是多MySQL Optimizer优化器进行了改进。不仅在速度上得到了改善,还为用户带来了更好的性能和更棒的体验。
3.2.2、 选择MySQL的理由
开放源代码,使用成本低。
性能卓越,服务稳定。
软件体积小,使用简单,并且易于维护。
历史悠久,社区用户非常活跃,遇到问题可以寻求帮助。
许多互联网公司在用,经过了时间的验证。
3.2.3、Oracle vs MySQL
Oracle 更适合大型跨国企业的使用,因为他们对费用不敏感,但是对性能要求以及安全性有更高的要求。
MySQL 由于其体积小、速度快、总体拥有成本低,可处理上千万条记录的大型数据库,尤其是开放源码这一特点,使得很多互联网公司、中小型网站选择了MySQL作为网站数据库(Facebook,Twitter,YouTube,阿里巴巴/蚂蚁金服,去哪儿,美团外卖,腾讯)。
4、RDBMS与 非RDBMS
从日常使用中我们能看出来,关系型数据库绝对是 DBMS 的主流,其中使用最多的 DBMS 分别是 Oracle、MySQL 和 SQL Server。这些都是关系型数据库(RDBMS)。
4.1、关系型数据库(RDBMS)
4.1.1、实质
这种类型的数据库是 最古老 的数据库类型,关系型数据库模型是把复杂的数据结构归结为简单的二元关系 (即二维表格形式)。
关系型数据库以 行(row) 和 列(column) 的形式存储数据,以便于用户理解。
SQL 就是关系型数据库的查询语言。
4.1.2 优势
复杂查询 可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。
事务支持 使得对于安全性能很高的数据访问要求得以实现。
4.2 、非关系型数据库(非RDBMS)
4.2.1 介绍
非关系型数据库,可看成传统关系型数据库的功能 阉割版本 ,基于键值对存储数据,不需要经过SQL层的解析, 性能非常高 。同时,通过减少不常用的功能,进一步提高性能。
目前基本上大部分主流的非关系型数据库都是免费的。
4.2.2 有哪些非关系型数据库
相比于 SQL,NoSQL 泛指非关系型数据库,包括键值型数据库、文档型数据库、搜索引擎和列存储等,除此以外还包括图形数据库。也只有用 NoSQL 一词才能将这些技术囊括进来。
键值型数据库
键值型数据库通过 Key-Value 键值的方式来存储数据,其中 Key 和 Value 可以是简单的对象,也可以是复杂的对象。Key 作为唯一的标识符,优点是查找速度快,在这方面明显优于关系型数据库,缺点是无法像关系型数据库一样使用条件过滤(比如 WHERE),如果你不知道去哪里找数据,就要遍历所有的键,这就会消耗大量的计算。
键值型数据库典型的使用场景是作为 内存缓存 。 Redis 是最流行的键值型数据库。
文档型数据库
此类数据库可存放并获取文档,可以是XML、JSON等格式。在数据库中文档作为处理信息的基本单位,一个文档就相当于一条记录。文档数据库所存放的文档,就相当于键值数据库所存放的“值”。MongoDB是最流行的文档型数据库。此外,还有CouchDB等。
搜索引擎数据库
虽然关系型数据库采用了索引提升检索效率,但是针对全文索引效率却较低。搜索引擎数据库是应用在搜索引擎领域的数据存储形式,由于搜索引擎会爬取大量的数据,并以特定的格式进行存储,这样在检索的时候才能保证性能最优。核心原理是“倒排索引”。
典型产品:Solr、Elasticsearch、Splunk 等。
列式数据库
列式数据库是相对于行式存储的数据库,Oracle、MySQL、SQL Server 等数据库都是采用的行式存储(Row-based),而列式数据库是将数据按照列存储到数据库中,这样做的好处是可以大量降低系统的I/O,适合于分布式文件系统,不足在于功能相对有限。典型产品:HBase等。
5、关系型数据库设计规则
一个数据库中可以有多个表,每个表都有一个名字,用来标识自己。表名具有唯一性。
表具有一些特性,这些特性定义了数据在表中如何存储,类似Java和Python中 “类”的设计。
5.1、表、记录、字段
E-R(entity-relationship,实体-联系)模型中有三个主要概念是: 实体集 、 属性 、 联系集
一个实体集(class)对应于数据库中的一个表(table),一个实体(instance)则对应于数据库表中的一行(row),也称为一条记录(record)。一个属性(attribute)对应于数据库表中的一列(column),也称为一个字段(field)。
ORM思想 (Object Relational Mapping)体现:
数据库中的一个表 <---> Java或Python中的一个类
表中的一条数据 <---> 类中的一个对象(或实体)
表中的一个列 <----> 类中的一个字段、属性(field)
5.2、 表的关联关系
表与表之间的数据记录有关系(relationship)。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。
四种:一对一关联、一对多关联、多对多关联、自我引用
5.2.1 一对一关联(one-to-one)
在实际的开发中应用不多,因为一对一可以创建成一张表。
举例:设计 学生表 :学号、姓名、手机号码、班级、系别、身份证号码、家庭住址、籍贯、紧急联系人、...
拆为两个表:两个表的记录是一一对应关系。
基础信息表 (常用信息):学号、姓名、手机号码、班级、系别
档案信息表 (不常用信息):学号、身份证号码、家庭住址、籍贯、紧急联系人、...
两种建表原则:
外键唯一:主表的主键和从表的外键(唯一),形成主外键关系,外键唯一。
外键是主键:主表的主键和从表的主键,形成主外键关系。
5.2.2、一对多关系(one-to-many)
常见实例场景: 客户表和订单表 , 分类表和商品表 , 部门表和员工表 。
举例:
员工表:编号、姓名、...、所属部门
部门表:编号、名称、简介
一对多建表原则:在从表(多方)创建一个字段,字段作为外键指向主表(一方)的主键
5.2.3 多对多(many-to-many)
要表示多对多关系,必须创建第三个表,该表通常称为 联接表 ,它将多对多关系划分为两个一对多关系。将这两个表的主键都插入到第三个表中。
举例:产品-订单
订单”表和“产品”表有一种多对多的关系,这种关系是通过与“订单明细”表建立两个一对多关系来
定义的。一个订单可以有多个产品,每个产品可以出现在多个订单中。
产品表 :“产品”表中的每条记录表示一个产品。
订单表 :“订单”表中的每条记录表示一个订单。
订单明细表 :每个产品可以与“订单”表中的多条记录对应,即出现在多个订单中。一个订单可以与“产品”表中的多条记录对应,即包含多个产品。