一. Vjudge链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19202
二. 题目大意:一根木棍,给出若干个必须切割的点,每次切一下,消耗当前总长度的费用。比如第一个样例,100总长度,3个要切割的点,在25,50,75。先切一下50,花费100,再切一下25,花费50。再切一下75,花费50。共花费200,这也是最小花费。注意要切才有花费。也就是说如果一条木棍,没有切点,那么花费为0。求最小花费。
三. 思路:这是一道区间DP的问题,把n个切点编号1~n。然后由小区间往大区间拓展,比如说只有1个切点,那么值肯定是总长度。2个切点,值从先切第一个或者先切第二个的最优值,然后就划归为只有1个切点的情况了。3个切点,值为切哪个切点之后,各个区间的最优值加起来最优和本身区间长度的和(切一下要消耗)。所以,我们只要保存所有情况,然后动态转移就行了。dp[i][j]表示i开始,j结束的一段区间内的最优值。
dp[i][j] = min(dp[i][k] + dp[k][j]) + len[j] - len[i];
i < k < j,len[t]表示从起点到该切点的长度。结果在dp[0][n+1] 0表示左端点,n+1表示右端点。
那么我们怎么样编程实现了,可以明显的知道, 如果一条木棍,没有切点,那么花费为0。于是在相邻的2个切点之间,花费为0。不如先把dp全部置为0。然后枚举每个终点,再枚举每个起点到小于当前终点的位置,再枚举所有切点,找出最小值的切点,然后就可以进行动态转移了。
为什么不能先枚举起点呢,首先我们要明确一个点:要更新dp[i][j],我们要保证i~j之间所有的区间已经最优了。如果先枚举起点(固定了起点),终点往后拉的话,从第一个切点开始的后面区域都没有更新。而且在最后第二重循环要枚举起点的时候,要从后往前,(从离终点最近的倒数2个点开始,倒数第一个点为0,而我们一开始把默认值置为0)才能满足小区间向大区间拓展。
四. 代码(好短的)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX_N = 55,
INF = 0x3f3f3f3f;
int dp[MAX_N][MAX_N], len[MAX_N];
int main()
{
//freopen("in.txt", "r", stdin);
int i, j, sum, n, k;
while(scanf("%d", &sum) && sum){
scanf("%d", &n);
for(i = 1; i <= n; i++)
scanf("%d", len+i);
memset(dp, 0, sizeof(dp));
len[0] = 0, len[n+1] = sum;
for(j = 2; j <= n+1; j++)
for(i = j-2; i >= 0; i--){
int tmp = INF;
for(k = i+1; k < j; k++)
tmp = min(tmp, dp[i][k] + dp[k][j]);
dp[i][j] = len[j] - len[i] + tmp;
}
printf("The minimum cutting is %d.\n", dp[0][n+1]);
}
return 0;
}