二分查找算法:初始化、查找区间与终止条件

文章详细阐述了二分查找算法在有序序列中的应用,强调了查找区间的一致性,即始终保持闭区间。介绍了如何初始化和调整查找区间,以及终止条件的设定。同时,讨论了查找特定边界元素的情况,如查找比目标小的元素个数或第一个不小于目标的元素位置。
摘要由CSDN通过智能技术生成

二分查找算法应用于有序序列,其核心思想是通过比较中间元素和目标元素,每次缩小一半的查找区间,从而实现快速搜索。具体步骤如下:

  1. 定义查找区间
  2. 取查找区间中间元素,与目标元素进行比较
    1. 若相同,则返回
    2. 若不同,缩小查找区间,直到区间中没有待查找元素

在实现二分查找算法时,需特别注意以下细节:leftright 变量的初始化终止条件以及查找区间的缩小。要确保查找过程中不漏掉任何元素,并保持前后区间性质的一致性。什么是保证区间性质的一致性呢?就是说你一开始定义的初始化的区间是闭区间,后面缩小的过程中就不能突然缩成半开半闭区间。

leftright变量对应当前查找区间的范围。

查找某个元素

以升序序列 vector<int> nums 为例,假设我们按以下方式初始化 leftright

int left = 0, right = nums.size() - 1;

这意味着初始查找区间为闭区间 [left, right]。后续代码应基于此编写,例如:

while (left <= right)
{
	int middle = left + (right - left) / 2; // 防止溢出
	if (nums[middle] == target)
	{
		return middle;
	}
	else if (nums[middle] > target)
	{
		left = middle + 1;
	}
	else if (nums[middle] < target)
	{
		right = middle - 1;
	}
}
return -1;

首先分析终止条件。在这里,由于是闭区间,left <= right 的条件对应的终止情况是 left == right + 1,此时查找区间为 [right + 1, right],即空区间,说明所有元素都被查找完了。否则,如果是left < right,终止情况就会是left == right,对应的查找区间是[right, right],这时候查找区间里还剩下一个元素,但是查找却终止了,也就是说我们查找的时候漏了这个元素,因此这个终止条件是错误的。

接着分析缩小查找区间范围的代码。相等的情况直接返回即可,不相等的情况需要排除 middle 元素,即从 middle 旁边的元素开始缩小查找区间,否则就会破坏了区间一致性,缩小出来的区间就不再是闭区间了。

同理,如果定义左闭右开区间,代码如下:

int left = 0, right = nums.size();
while (left < right)
{
	int middle = left + (right - left) / 2;
	if (nums[middle] == target)
	{
		return middle;
	}
	else if (nums[middle] > target)
	{
		left = middle + 1;
	}
	else if (nums[middle] < target)
	{
		right = middle;
	}
}
return -1;

查找某个边界

例如,我们要查找比 target 小的元素个数或者说第一个不小于 target 的元素位置(有些地方也叫做左侧边界)。

首先定义初始查找区间,这里仍使用闭区间:

int left = 0, right = nums.size() - 1;

然后设置终止条件:

while (left <= right)

接下来思考如何缩小区间以实现目标。不相等的情况与上文相同,但由于我们要查找不小于(也就是大于等于) target 的元素,因此应将相等的情况纳入 nums[middle] > target 的情况中:

{
	int middle = left + (right - left) / 2;
	if (nums[middle] >= target)
	{
		right = middle - 1;
	}
	else if (nums[middle] < target)
	{
		left = middle + 1;
	}
}

最后考虑应该返回left还是right。结束时,根据终止条件和缩小区间的代码,可知此时应该满足left = right + 1nums[right + 1] >= targetnums[left - 1] < target,即nums[left] >= targetnums[right] < target。因此,这里应该返回left

最后考虑应返回 left 还是 right。循环结束时,根据终止条件和缩小区间的代码,变量满足 left = right + 1nums[right + 1] >= targetnums[left - 1] < target,即 nums[left] >= targetnums[right] < target。因此,这里应返回 left

其他情况同理。

拓展阅读

  1. 详解二分查找算法, https://www.cnblogs.com/kyoner/p/11080078.html - 强烈建议初学者或不熟悉二分查找算法的同学阅读这篇文章,深入浅出,非常详尽
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值