滑雪问题(dfs+递归)记忆化搜索 c语言

该博客讨论了如何解决滑雪场最长滑雪时间的问题。利用DFS(深度优先搜索)和记忆化搜索,通过C语言实现,计算给定高度矩阵中能滑行的最长时间。程序读取场地尺寸和高度信息,输出最长滑行时间。
摘要由CSDN通过智能技术生成

BackGroud

今年冬天,到西岭雪山上滑雪的人越来越多。滑雪场的管理人员为了提高游客滑雪的兴趣,决定组织一场滑雪比赛。但他们在比赛地点的选择上出现了困难,因为他们无法记算出某个场地所需要的最长滑雪时间,进而安排获奖的时间段。他们现在请求你的帮助。


The Problem

我们把场地分为一个个的格子,给每个格子标定一个整数,代表这个格子所代表的地面的海拔高度。 比赛的参赛者可以从任意一个格子开始,但只能向相邻的四个格子移动,并且目地格子的高度必须小于现在所在格子的高度。我们假设从一个格子滑行到另一个格子所用的时间为1个单位时间。现在我们给出场地的大小(n*m)和每个格子所代表的地面的海拔高度。你能计算出在这个场地上最长能滑行多少时间吗?

输入

本题包括多组测试数据。每组测试数据的第一行为两个整数n和m(1<=m,n<=50),分别代表场地的行和列数。接下来是一个n*m的矩阵。包含每个格子所代表的地面的海拔高度。当n=m=0时输入结束,这组数据不包括在需要计算的数据中。

记忆化搜索是一种优化递归算法的方法,它通过保存已计算的结果以避免重复计算,提高算法的效率。引用是一个使用记忆化搜索C语言例子,通过保存计算结果在数组f中,避免了重复计算。在这个例子中,函数w用来计算三个参数a、b、c的结果,并使用数组f保存计算结果。当函数w被调用时,首先判断是否已经计算过,如果是则直接返回结果,否则进行计算并保存结果。该例子中的递归调用是通过不断减小参数a、b、c的值来实现的。引用是一个使用记忆化搜索的Java语言例子,它用来计算一个数组nums中能够组成目标值S的方式数量。与引用类似,它使用了一个二维数组memo来保存计算结果,并在递归调用时先判断是否已经计算过。记忆化搜索的优点是可以避免重复计算,提高算法效率。在递归调用时,每一层都会生成一个新的函数实例,它们之间的参数和局部变量是独立的,互不干扰。递归过程中需要明确参数的意义和当前的值,设定递归的边界条件,以及确定递归调用的返回值。记忆化搜索的过程是定义一个数组,用来存储递归所求得的值。在主程序中,对数组进行初始化并设置边界值。在递归函数中,首先判断数组中的值是否已经计算过,如果是则直接返回结果,否则进行计算并保存结果。这样可以避免重复计算,提高算法效率。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [洛谷 P1464 Function](https://blog.csdn.net/HJ921004/article/details/101368809)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [记忆化搜索递归)](https://blog.csdn.net/To_be_to_thought/article/details/99642379)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [递归+记忆化搜索](https://blog.csdn.net/weixin_42696435/article/details/90741289)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值