问题一:树的深度
问题描述:
输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。
例如:
给定二叉树 [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回它的最大深度 3 。
解题思路:
这题可以使用二叉树的遍历解题,前序、中序、后序遍历都行;这里以后序遍历演示。再遍历的过程中进入子节点时将树的深度加一即可,树的深度作为参数传入。用一个全局变量进行统计深度的最大值即可。
这题使用层次遍历也可以解题。层次遍历需要注意的是怎样分层,由于第一个根节点独占一层,刚开始进入循环的时候队列中剩余的节点就是上一层的所有节点。进入循环后我们只需要将处理完毕再进入下一次循环即可,这样每一次循环我们处理的都是一层的节点。循环的次数就是树的深度。
代码实现:
后序遍历代码:
public static int maxDepth(TreeNode root) {
if(root==null) return 0;
int deep = 1;
dfs(root, deep);
return max;
}
private static void dfs(TreeNode root, int deep) {
if(root==null) return ;
dfs(root.left, deep+1);
dfs(root.right, deep+1);
if(max<deep)
max = deep;
}
提交结果:
层次遍历代码:
public int maxDepth(TreeNode root) {
if(root == null) return 0;
List<TreeNode> queue = new LinkedList<>() {{ add(root); }}, tmp;
int res = 0;
while(!queue.isEmpty()) {
tmp = new LinkedList<>();
for(TreeNode node : queue) {
if(node.left != null) tmp.add(node.left);
if(node.right != null) tmp.add(node.right);
}
queue = tmp;
res++;
}
return res;
}
提交结果:
问题二:二叉平衡树的判断
问题描述:
输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false 。
解题思路:
问题二是和问题一相关的,因为判断平衡二叉树需要计算树的深度;我们可以遍历二叉树(前序、中序、后序都行)判断每一个节点的左右子树的深度相差是否超过1。需要注意的是根节点有为空或者树只有一个节点的情况,为了防止这种情况我们可以将函数提取出来,再遍历之前先对这两种情况进行处理。
由于问题一代码是用全局变量进行记录树的深度,我们需要将其修改为以返回值的形式返回树的深度。代码如下:
public static int maxDepth(TreeNode root) {
if(root==null) return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right))+1;
}
代码实现:
public boolean isBalanced(TreeNode root) {
if(root==null) return true;
if(root.left==null && root.right==null) return true;
return check(root);
}
public boolean check(TreeNode root) {
if( Math.abs(maxDepth(root.left)-maxDepth(root.right)) > 1 ) {
return false;
}
boolean l = true;
boolean r = true;
if(root.left!=null) //防止空指针
l = check(root.left);
if(root.right!=null)
r = check(root.right);
return l&&r; //左右子树都为true时才返回true
}
public static int maxDepth(TreeNode root) {
if(root==null) return 0;
return Math.max(maxDepth(root.left), maxDepth(root.right))+1;
}
提交结果: