问题描述:
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
解题思路:
使用动态规划求解,这题需要注意的是dp[i]表示的是以nums[i]结尾的所有子序列中的最大和;即dp[length-1]并不是想要的结果,结果应该是dp数组中的最大值,我们可以在建立dp数组的同时进行记录最大值max。当dp数组建立完成时即可得出结果。
这题的动态规划巧妙的地方在于并不是“求什么就设什么”;而是通过dp数组得出每一部分的最大和,然后从中选出最终答案。
代码实现:
public static int MaxSubArray(int[] nums) {
if(nums.length==1) return nums[0];
int max = nums[0];
int[] dp = new int[nums.length];
//初始化dp数组
dp[0] = nums[0];
for(int i=1; i<nums.length; i++){
dp[i] = Math.max(nums[i], dp[i-1]+nums[i]);
max = Math.max(dp[i], max);
}
return max;
}
提交结果:
由于dp[i]的求解只用到了dp[i-1],所以上面的代码可以省去dp数组,节省空间。
public static int MaxSubArray2(int[] nums) {
if(nums.length==1) return nums[0];
int max = nums[0];
int sum = nums[0];
for(int i=1; i<nums.length; i++){
sum = Math.max(nums[i], sum+nums[i]);
max = Math.max(sum, max);
}
return max;
}