poj3436
求最大流的问题
虚拟出一个源点 和汇点
然后把输入都为0或者2的机器和源点相连接
把输出都为1的机器和汇点相连接
然后根据机器之间的信息把各个机器的输出和输入相链接
这里值得注意的是 每台机器的输入和输出之间也有链接 大小为每台机器每小时的产量
#include <iostream>
#include <deque>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXP = 12;//最大的部件数目
const int MAXM = 100;//最大的机器的数目
const int INF = 0xffffff;
int G[MAXM][MAXM];
int input[MAXM][2 * MAXP + 1];//用来存储输入
int p, m,e;
int layer[MAXM + 2];
int visit[MAXM + 2];
vector<int> a;
vector<int> b;
vector<int> c;
//源点为1节点 m+2为汇点 2~m+1为机器
void insert(int s, int e,int w)
{
bool sameflag = false;
for (int i = 0; i < a.size(); i++)
{
if (a[i] == s&&b[i] == e)//如果出现了同一对点 则增加这对点的流量
{
sameflag = true;
c[i] += w;
}
}
if (!sameflag)//没有找到相同的点对 则添加进向量里
{
a.push_back(s);
b.push_back(e);
c.push_back(w);
}
}
void output()
{
for (int i = 0; i < a.size(); i++)
{
cout << a[i] << " " << b[i] << " " << c[i] << endl;
}
a.clear();
b.clear();
c.clear();
}
void constructGraph()
{
memset(G, 0, sizeof(G));//将图清0
//构造机器内部的链接
for (int i = 1; i <= m; i++)
{
G[2 * i][2 * i + 1] = input[i][0];
}
//构造源点和m台机器的链接
for (int i = 1; i <= m; i++)//扫描m台机器的输入
{
bool flag = true;//i编号的机器与源点链接成功的标志
for (int j = 1; j <= p; j++)
{
if (input[i][j] == 1)//如果出现1则说明需要这个part 则不可以和源点相链接
flag = false;
}
if (flag ==true)
G[1][2*i] = input[i][0];//i机器和源点链接的最大流为这台机器的吞吐量
}
//构造m台机器和汇点的链接
for (int i = 1; i <= m; i++)//扫描m台机器
{
bool flag = true;
for (int j = p+1; j <= 2 * p; j++)//检测i机器的输出是否都为1
{
if (input[i][j] != 1)
flag = false;
}
if (flag == true)
G[2*i+1][2*m + 2] = input[i][0];//i机器和汇点的链接的最大流为这台机器的吞吐量
}
//构造m台机器的外部链接
for (int i = 1; i <= m; i++)//扫描所有可能的配对情况 i为输出机器 j为输入机器
for (int j = 1; j <= m; j++)
{
if (i != j)
{
bool flag = true;
for (int k = 1; k <= p; k++)//检出所有的输入和输出
{
if ((input[j][k] == 0 && input[i][k + p] != 0) || (input[j][k] == 1 && input[i][k + p] != 1))
flag = false;
}
if (flag == true)G[2*i + 1][2*j] = INF;
}
}
}
int EdmondsKarp()
{
int sum = 0;
bool findend;//找到汇点的标志
deque<int>q;
int p[2 * MAXM];//存放bfs的前驱节点
int visit[MAXM];//访问标志位
while (1)
{
findend = false;
memset(visit, 0, sizeof(visit));
q.clear();
q.push_back(1);
visit[1] = 1;
p[1] = 1;
while (!q.empty())
{
int temp = q.front();
q.pop_front();
if (temp == e)//找到了汇点
{
int min = INF;
for (int i = temp; i != 1; i = p[i])//寻找最小的增量
if (min >G[p[i]][i])
min = G[p[i]][i];
for (int i = temp; i != 1; i = p[i])//更新图和插入 在增广路径上的所有点
{
G[p[i]][i] -= min;
G[i][p[i]] += min;
if (p[i] != 1 && i != e)//不记录虚拟出来的源点和汇点
{
int start = p[i] / 2;
int end = i / 2;
if (start != end)
{
insert(start, end, min);
}
}
}
sum += min;
findend = true;
break;
}
else//如果没有找到汇点
{
for (int i = 1; i <= e; i++)
{
if (!visit[i] && G[temp][i] > 0)
{
q.push_back(i);
visit[i] = 1;
p[i] = temp;
}
}
}
}
if (!findend)
break;
}
return sum;
}
int main()
{
while (cin >> p >> m)
{
//p为部件的数目 m为机器的数目
for (int i = 1; i <= m; i++)//输入m个机器的生产速度 input数据 和output数据
{
for (int j = 0; j < 2 * p + 1; j++)
{
cin >> input[i][j];
}
}
e = 2 * m + 2;//由于添加了源点和汇点 总的点数加2
constructGraph();
int sum;
sum = EdmondsKarp();
if (sum)
{
cout << sum << " ";
cout << a.size() << endl;
output();
}
else
{
cout << 0 << " " << 0<<endl;
}
}
return 0;
}