Tesseract学习(五)

本文介绍了如何通过训练语言库提升Tesseract对手写体的识别效果。通过使用jTessBoxEditor和Tesseract,遵循7步训练过程,包括合并图片、生成box文件、特征文件、字符集、聚集特征等,最终创建自定义的.traineddata字典文件,显著提高识别准确率。
摘要由CSDN通过智能技术生成

        前面讲的都是对于标准字的识别,但对于验证码或者手写字体识别率就会非常低。为了让Tesseract识别自己的语言,可以通过训练语言库的方式来解决。下面通过一个识别手写字体的例子来了解Tesseract提供什么方式训练自己的语言库。

      首先我们来看下未经过训练的Tesseract对接下来的这张图片的识别率。

待识别图片:

识别结果:

     

可以看出识别效果很不理想。下面训练手写字体的语言库,看看训练后的Tesseract识别效果如何。

为了训练语言库,我们需要两个工具,Tesseract和jTessBoxEditor。经过前面的介绍,Tesseract相信大家应该不陌生了,至于jTessBoxEditor的用途,后面用到时将会介绍。


训练步骤:

1.下载

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值