题目要求“第K堆中任意一块积木的编号要大于第K+1堆中任意一块积木的编号”,为了与后面的保持一致,我们把它改为“小于后面一堆”,这样改动显然不会影响最终的解,接下来就是状态设计了。对于第j快积木,假设当前已经有i堆积木了,那么它有三种决策,不放或另起一堆或放在当前堆的最上面,由题目限制可知,不可能放在第i堆前面的堆中。对于放在当前堆的这一决策,当然还要考虑能否放上去,也就是我们还要知道第i堆最上面放的是哪一块积木以及是哪一面朝上。说到这里状态也就可以写出来了,即(i,j,k,a),k记录编号,a记录面。状态和决策都已经知道了,那么这题也就基本出来了。
#include<iostream>
#include<cstdio>
using namespace std;
struct jimu
{
int a,b,c;
}p[101][3];
int dp[101][101][101][3];
int n,m;
inline int max(int a,int b)
{
return a>b?a:b;
}
int dfs(int i,int j,int k,int t)//已经有i堆,第j个积木,当前堆顶的积木编号为k,t面朝上(面用0,1,2区分)
{
if(j>n)
{
if(i==m)
return 0;
else//不符合刚好m堆的限制,因此不能算这种情况
return -10000000;
}
if(dp[i][j][k][t]!=-1)
return dp[i][j][k][t];
dp[i][j][k][t]=dfs(i,j+1,k,t);//不放
if(i<m)//另取一堆
{
for(int x=0;x<3;x++)
dp[i][j][k][t]=max(dp[i][j][k][t],dfs(i+1,j+1,j,x)+p[j][x].c);
}
for(int x=0;x<3;x++)//放在当前堆
{
if(j>k&&p[j][x].a<=p[k][t].a&&p[j][x].b<=p[k][t].b)
dp[i][j][k][t]=max(dp[i][j][k][t],dfs(i,j+1,j,x)+p[j][x].c);
}
return dp[i][j][k][t];
}
int main()
{
int i,j,k;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
{
scanf("%d%d%d",&p[i][0].a,&p[i][0].b,&p[i][0].c);
p[i][1].c=p[i][0].a;p[i][1].a=p[i][0].b;p[i][1].b=p[i][0].c;
p[i][2].c=p[i][0].b;p[i][2].a=p[i][0].a;p[i][2].b=p[i][0].c;
for(j=0;j<3;j++)
if(p[i][j].a>p[i][j].b)
swap(p[i][j].a,p[i][j].b);
}
for(i=0;i<3;i++)
p[0][i].a=p[0][i].b=10000;
//memset(dp,-1,sizeof(dp));
for(i=0;i<=n;i++)
for(j=0;j<=n;j++)
for(k=0;k<=n;k++)
dp[i][j][k][0]=dp[i][j][k][1]=dp[i][j][k][2]=-1;
dfs(1,1,0,0);
printf("%d\n",dp[1][1][0][0]);
//system("pause");
return 0;
}