动态规划-Floyd Warshall(佛洛依德) algorithm

一、Floyd算法简介

Floyd(弗洛伊德)算法相对于Dijkstra算法来说,可以解决多源最短路径问题(即可以从任意一个点到任意一个点),可应用于地图导航走最短路径、为各城市修建最短路径的通信网(节省成本)等问题,时间复杂度是O(n^3)

二、代码部分

2.1.Graph.h文件代码

#ifndef GRAPH_H
#define GRAPH_H
#include <algorithm>
#include <stdio.h>	// exit()函数需要用到的头文件
#define X 9999	//相当于无穷大

class Graph
{
    private:
        static Graph* instance;		//创建实例:类是一个抽象类,实例可方便用于调取类成员的方法函数
        int n, m;	//n是顶点个数,m是边数
        char* data;		//顶点数组,用来储存顶点(char类型)
        int** w;	//weight 边的权重,邻接矩阵
        int** path; //用来记录最小边权值顶点的序号,邻接矩阵

    public:
        Graph();
        virtual ~Graph();		//虚析构函数,用来程序结束后释放new的内存
        static Graph* getInstance();	//获取实例

        void createGraph(Graph& G);
        int getIndex(const Graph& G, char v);	//获取顶点v的在顶点数组data中的下标
        void Floyd(Graph& G);
        void showPath(const Graph& G, int u, int v);	//展示最短路径

};
#endif // GRAPH_H

2.2.Graph.cpp文件代码

#include "Graph.h"
#include <iostream>
using namespace std;

Graph::Graph() //默认构造
{
    // ctor
}

Graph *Graph::instance = nullptr; //固定套路
Graph *Graph::getInstance()       //同上,记住就好,也可以自己尝试理解下
{
    if (!instance)
        instance = new Graph();
    return instance;
}

int Graph::getIndex(const Graph &G, char v) //获取顶点v在顶点数组中的下标
{
    for (int i = 0; i < G.n; i++)
        if (G.data[i] == v)
            return i;
    return -1; //没找到就返回-1
}

void Graph::createGraph(Graph &G)
{
    cout << "please input the number of vertex and arc:";
    cin >> G.n >> G.m;
    G.data = new char[G.n]; //动态创建一维数组
    cout << "please input the value of vertice:";
    for (int p = 0; p < G.n; p++)
        cin >> G.data[p];
    char v1, v2;
    int power, i, j;
    G.w = new int *[G.n]; //动态创建二维数组,申请了 int* 类型的G.n行空间
    for (int s = 0; s < G.n; s++)
        G.w[s] = new int[G.n]; //每一行申请一个int类型的G.n列空间

    for (int x = 0; x < G.n; x++)
        for (int y = 0; y < G.n; y++)
        {
            if (x == y)
                G.w[x][y] = 0; //边的邻接矩阵中左对角线权重(即自己的权重)都设为0,因为是多源的
            else
                G.w[x][y] = X; //其他边的权重初始化为无穷大
        }

    cout << "please input the weight of arc between 2 vertice as 100 A B:" << endl;
    for (int k = 0; k < G.m; k++)
    {
        cin >> power >> v1 >> v2;
        i = getIndex(G, v1);
        j = getIndex(G, v2);
        if (i == -1 || j == -1)
        { //没在顶点数组中找到对应的顶点下标
            cout << "Sorry, I can't find the vertex" << endl;
            exit(-1); //直接退出程序
        }
        G.w[i][j] = power; //有向图赋值边的权重
    }
}

void Graph::Floyd(Graph &G)
{
    G.path = new int *[G.n]; //动态创建二维数组
    for (int s = 0; s < G.n; s++)
    {
        G.path[s] = new int[G.n];
        for (int t = 0; t < G.n; t++)
            G.path[s][t] = -1; //初始化path邻接矩阵的值
    }
    //特别注意:不能用fill函数来初始化动态二维数组,因为动态new出来的空间不一定连续

    for (int v = 0; v < G.n; ++v) // v是指在某两个点中,它们之间点的下标
        for (int i = 0; i < G.n; ++i)
            for (int j = 0; j < G.n; ++j)
                if (G.w[i][j] > G.w[i][v] + G.w[v][j]) //看配合B站视频讲解效果更棒,这里不多做解释!
                {
                    G.w[i][j] = G.w[i][v] + G.w[v][j];
                    G.path[i][j] = v;
                }
}

void Graph::showPath(const Graph &G, int u, int v)
{ //看配合B站视频讲解效果更棒,该函数不多做解释!

    if (G.path[u][v] == -1)
        cout << G.data[u] << " to " << G.data[v] << endl; // B站输出的是顶点序号,我这输出的是顶点的值
    else
    {
        int mid = G.path[u][v];
        showPath(G, u, mid);
        showPath(G, mid, v);
    }
}

Graph::~Graph() //虚析构函数作用:一般都是用来程序结束后释放new出来的内存
{
    delete[] data;

    for (int i = 0; i < n; i++)
        delete[] w[i];
    delete[] w;

    for (int i = 0; i < n; i++)
        delete[] path[i];
    delete[] path;
}

2.3.main.cpp文件代码

#include <iostream>
#include "Graph.h" //自己写的头文件要用引号
#include "Graph.cpp"
using namespace std;

int main()
{
    char v1, v2;
    int a, b;
    Graph G;
    Graph::getInstance()->createGraph(G); //用实例来调取抽象类的函数方法
    Graph::getInstance()->Floyd(G);
    cout << "please input which two vertice you want to show the shortest path between them:";
    cin >> v1 >> v2;
    a = Graph::getInstance()->getIndex(G, v1);
    b = Graph::getInstance()->getIndex(G, v2);
    Graph::getInstance()->showPath(G, a, b);
    return 0;
}

// 6 11
// 1 2 3 4 5 6
// 3 1 2
// 3 2 1
// -4 1 4
// 4 2 3
// 4 3 2
// -3 3 6
// 4 4 5
// 4 5 4
// -1 5 2
// 3 5 6
// 3 6 5

三.例子介绍

please input the number of vertex and arc:6 11
please input the value of vertice:1 2 3 4 5 6
please input the weight of arc between 2 vertice as 100 A B:
3 1 2
3 2 1
-4 1 4
4 2 3
4 3 2
-3 3 6
4 4 5
4 5 4
-1 5 2
3 5 6
3 6 5
please input which two vertice you want to show the shortest path between them:6 1

Output:
6 to 5
5 to 2
2 to 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值