Petri网学习(四):Petri网的结构性质

一、结构有界性&守恒性

1. 结构有界性

定义:设N=(P,T;F)为一个网。对N赋予任意的初始标识M0,网(N,M0)都是有界的,则称N为结构有界网;

  • 再回忆一下什么是有界petri网:在PN=(P,T;F,M0)中,\forall p\in P,库所p都有界,则称PN为有界petri网。区别在于是不是任意初始标识
  • 什么是库所有界:\forall M\in R(M_0),M(p)\leqslant B 

定理:设A为网N=(P,T;F)的关联矩阵,N是结构有界网的充分必要条件是:存在一个m(m=|P|)维正整数向量Y,使得AY<=0

证明充分性思路:要证明一个网是结构有界网,则要证明\forall M_0,\forall M\in R(M_0):M(k)\leqslant一个正整数

定义:设N=(P,T;F)为一个网,P_1\subseteq P,对于\forall M_0\forall p\in P_1的p都是有界的,则称P1为N的结构有界库所子集。当P1={p}时,称库所p是结构有界的。若p不是结构有界的,则称p为结构无界库所

定理:设A为网N=(P,T;F)的关联矩阵,P_1\subseteq P是网N的结构有界库所子集的充分必要条件是:存在非平凡的非负整数向量Y,使得AY<=0,且\forall p_i\in P,Y(p_i)>0

2. 守恒性

定义:设N=(P,T;F)为一个网,如果存在一个m(m=|P|)维正整数权向量Y,使得对于任意初始标识M0,\forall M\in M_0,有:

\sum_{i=1}^m M(p_i)Y(i)=\sum_{j=1}^m M_0(p_j)Y(j),则N是守恒的;特别的,当Y=[1,1,...,1]时,\sum_{i=1}^m M(p_i)=\sum_{j=1}^m M_0(p_j),称N是严格守恒的

\sum_{i=1}^m M(p_i)Y(i)=M^TY\sum_{j=1}^m M_0(p_j)Y(j)=M_0^TY

守恒是指网N从任何初始状态开始运行,这运行的过程中标识数的权和保持不变

严格守恒是指网N从任何初始状态开始运行,这运行过程中标识数的保持不变

定理1:设A为网N=(P,T;F)的关联矩阵,N是守恒网的充分必要条件是:存在一个m(m=|P|)维正整数向量Y,使得AY=0;

推理1:设A为网N=(P,T;F)的关联矩阵,N是严格守恒网的充分必要条件是:存在一个m(m=|P|)维正整数向量Y=[1,1,1,...,1],使得AY=0;

推理2:若N是守恒网,则N必然是结构有界网;

定义2:设N(P,T;F)为一个网,P_1\subseteq P,若存在一个m(m=|P|)维非负整数向量Y,使得\sum_{p_i\in P_1}M(p_i)Y(i)=\sum_{p_j\in P_1}M_0(p_j)Y(j),则称网N是关于库所集P1部分守恒的。

定理:设A为网N=(P,T;F)的关联矩阵。网N关于库所子集P1为部分守恒的充分必要条件是:存在m维非负整数向量Y,使得AY=0

二、可重复性&协调性

1. 可重复性

定义1:设N=(P,T;F)为一个网,若存在一个N的初始标识M0,和一个无限变迁序列\sigma,使得M_0[\sigma>,且\forall t\in T都无限次地出现,则称N为一个可重复网。M0称为N的一个可重复标识

定理1:设A为网N=(P,T;F)的关联矩阵,网N是可重复网的充分必要条件是:存在n维正整数向量X,使得A^TX\geqslant 0

推论:设N=(P,T;F)为一个可重复网,M0是N的一个可重复标识,那么对任意的M\geqslant M_0,M也是N的一个可重复标识。

2. 协调性

定义2:设设N=(P,T;F)为一个网,若存在一个N的初始标识M0和一个变迁序列\sigma \in T^*,使得M_0[\sigma>M_0,且\forall t\in T, \#(\sigma ,t)\geqslant 1,则称网N是一个协调网。

定理2:设A为网N=(P,T;F)的关联矩阵,网N是协调网的充分必要条件是:存在n维正整数向量X,使得A^TX=0

三、不变量

定义1:设N=(P,T;F)是一个网,m=|P|,n=|T|,A是N的关联矩阵

1.如果存在非平凡的m维非负整数向量Y,使得AY=0,则称Y是N的一个S-不变量

2.如果存在非平凡的n维非负整数向量X,使得A^TX=0,则称X是N的一个T-不变量

定理1:设Y1和Y2为N=(P,T;F)的两个S-不变量,X1和X2为N的两个T-不变量。那么

  1. Y1 + Y2是网N的S-不变量, X1 + X2是网N的T-不变量。
  2. 若Y1 - Y2 >0,则Y1 - Y2也是网N的一个网S-不变量;若X1 - X2 >0 , X1 - X2是网N的T-不变量。

定义2:设N=(P,T;F)是一个网,m=|P|,n=|T|,A是N的关联矩阵。Y1(X1)是N的一个S-不变量(T-不变量),若对于任意的Y<Y1(X<X1)都不是N的S-不变量(T-不变量),则称Y1(X1)是N的一个极小S-不变量(极小T-不变量)

定义2.1:设V_1,V_2,...V_k都是n维非负整数向量,如果存在一组非负整数c_1,c_2,...,c_k,使得V=c_1V_1+c_2V_2+...+c_kV_k,则称V被V_1,V_2,...V_k非负整系数线性表出,或称V是V_1,V_2,...V_k的非负整系数线性组合。

定理2:一个网N的任意一个S-不变量(T-不变量)都是网N的极小S-不变量(极小T-不变量)的非负整系数线性组合

定义3.1:设Y,X分别为网N=(P,T;F)的S-不变量和T-不变量。记:

||Y||=\left \{ p_i\in P|Y(i)>0\right \};(S-不变量的Y支集)

||X||=\left \{ t_j\in T|X(j)>0\right \};(T-不变量的X支集)

并分别称他们为S-不变量的Y支集T-不变量的X支集

定义3.2:设Y是网N=(P,T;F)的一个S-不变量,||Y||=P1。如果任意满足||Y1||=P1,且Y1<Y的m维非负整数向量Y1都不是N的S-不变量,则称Y是立于支集P1上的极小S-不变量。同理可定义立于支集T1上的极小T-不变量

(立于xx支集上的极小S-不变量=A,极小S-不变量=B;A和B之间的区别是:A不一定是B,但B一定是某种A。A关心的是支集,B关心的是全集)

定义3.3:设Y为网N=(P,T;F)的一个S-不变量,||Y||=P1,如果任意的P_2\subset P_1都不是网N的S-不变量的支集,则称P1是网N的S-不变量的极小支集。同理可定义网N的T-不变量的极小支集。

关于不变量的一些定理:

1.设P1,P2是网N=(P,T;F)的两个S-不变量的支集,则P_1\cup P_2也是网N的一个S-不变量支集;

2.网N=(P,T;F)是一个守恒网,当且仅当P是N的一个S-不变量支集;网N是一个协调网,当且仅当T是N的一个T-不变量支集

3.对每个极小支集P1(T1),立于极小支集P1(T1)上的极小S-不变量(极小T-不变量)是唯一的。

4.一个网N的任意一个S-不变量(T-不变量)都是立于支集的极小S-不变量(极小T-不变量)的非负有理系数的线性组合。如果网N每个立于支集上的极小S-不变量(极小-T不变量)都是0-1向量,则网N的任意一个S-不变量(T-不变量)都是立于支集的极小S-不变量(极小T-不变量)的非负整系数的线性组合

个人对不变量的总结:

四、死锁&陷阱

死锁:前集是后集的子集

陷阱:后集是前集的子集

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 7
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值