Codeforces Round #383 (Div. 2) C(递归找环求最小公倍数)

题目链接
题目大意:表示意思有点绕,什么owww的,通俗的来讲就是找环,问的是满足x走到y的步数可以让y走到x。
分析
那么如果x走到x是一个偶数n,说明可以用n/2走到y且y不等于x
然后再用n/2步数走到x。这个环的权值就是n/2;
如果n是一个奇数,那么这个环的权值就是n。
然后就是把所有环的权值都找到并且求他们的最小公倍数。就得到答案啦

#include<stdio.h>
#include<string.h>
long long a[1010];
int vis[1010];    //用来标记点是否遍历过
int flog;           //用来记录是否有不成环的点
long long b[1010];
long long gcd(long long aa,long long bb)
{
    return bb==0?aa:gcd(bb,aa%bb);
}
long long dfs(int u,int t,int now)
{

    if(now==u&&vis[u])   //找到环
    return t;
    if(vis[now])     //找不到环
    return -1;
    vis[now]=1;
    dfs(u,t+1,a[now]);
}
int main()
{
    int n;
    scanf("%d",&n);
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    scanf("%lld",&a[i]);
    flog=0;
    int cut=0;
    for(int i=1;i<=n;i++)
    {
        if(vis[i])
        continue;
        b[cut++]=dfs(i,0,i);
        if(b[cut-1]==-1)
        {
            printf("-1\n");
            flog=1;
            break;
        }
        if(b[cut-1]%2==0)  //偶数步数减半
        b[cut-1]/=2;
    }
    if(!flog)
    {
        long long aa=b[0];
        long long bb;
        for(int i=1;i<cut;i++)  //求最小公倍数
        {
            bb=aa*b[i];
            aa=gcd(aa,b[i]);
            aa=bb/aa;
        }
        printf("%lld\n",aa);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值