题目大意:有n个城市 m条无向边有一队恐怖分子要从某一城市到另一城市 打算在某些城市安放一些警察去抓住他 但若在某个城市安放警察需要一定费用问要抓到恐怖分子 最少的费用是多少?
分析:拆点,将费用当容量建图
拆开的点容量为费用,其他的连边容量为inf跑一遍最大流就可以得到最小割
因为最小割求的是割后不连通,于是只要割去满流的边就是最小割了。
#include<stdio.h>
#include<string.h>
#include<queue>
#include<vector>
using namespace std;
#define inf 200000000
#define MAXN 10010
struct tree
{
int from,to,cap,flow;
tree(){}
tree(int ff,int tt,int cc,int ww)
{
from=ff;to=tt;cap=cc;flow=ww;
}
};
vector<tree>G;
vector<int>v[10010];
int cur[10010];
int d[10010];
int source,sink;
int q[200010];
void addtree(int from,int to,int cap)
{
G.push_back(tree(from,to,cap,0));
G.push_back(tree(to,from,0,0));
int m=G.size();
v[from].push_back(m-2);
v[to].push_back(m-1);
}
bool bfs()
{
memset(d,-1,sizeof(d));
int front=0;int back=0;
q[back++]=source;
d[source]=0;
while(front<back)
{
int u=q[front++];
if(u==sink) return true;
for(int i=0;i<v[u].size();i++)
{
tree &e=G[v[u][i]];
if(d[e.to]==-1&&e.flow<e.cap)
{
d[e.to]=d[u]+1;
q[back++]=e.to;
}
}
}
return false;
}
int dfs(int x,int a)
{
if(x==sink||a==0)
return a;
int flow=0,f;
for(int &i=cur[x];i<v[x].size();i++)
{
tree &e=G[v[x][i]];
if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
G[v[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)
break;
}
}
if (!flow) d[x] = -2;
return flow;
}
int maxflow()
{
int flow=0;
while(bfs())
{
memset(cur,0,sizeof(cur));
flow+=dfs(source,inf);
}
return flow;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
for(int i=0;i<=MAXN;i++)
v[i].clear();
G.clear();
scanf("%d%d",&source,&sink);
sink=sink+n;
for(int i=1;i<=n;i++)
{
int cost;
scanf("%d",&cost);
addtree(i,n+i,cost);
}
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
addtree(n+a,b,inf);
addtree(b+n,a,inf);
}
printf("%d\n",maxflow());
}
}