三门问题_java模拟测试

博客探讨了三门问题(Monty Hall problem)的数学概率,解释了为什么在主持人揭示一扇有山羊的门后,更换选择能提高赢得汽车的概率。通过代码模拟验证,换门赢得汽车的概率为2/3,而不换门的概率仅为1/3。博主提供了两种验证方法:扑克牌游戏和Java代码模拟,并分享了实际运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三门问题(Monty Hall problem)

昨天在刷douyin时,恰巧刷到了一条关于数学概率的小视频。点赞人数很多,评论人数也很多,重点是视频的内容谈到的三门问题确实非常的吸引人去思考(反正我有被吸引到,谢谢)。。

视频很短,结尾处就把“答案”说出来了。

当然,以我这脑瓜子,拿着手机愣是想了半个多小时,依然没弄明白为啥我的想法与公布的答案不符,一度让我怀疑我的智商。翻看了一下评论区,大家的想法和意见也都有分歧,有和我想的一样的,也有和公布的答案一样的,还很热心的把原因讲解了一遍,,,嗯,我还是没搞懂。

 

进入正题

首先看一下什么是“三门问题”。接下来是度娘登场时间~~~

三门问题(Monty Hall problem)亦称为蒙提霍尔问题、蒙特霍问题或蒙提霍尔悖论,大致出自美国的电视游戏节目Let's Make a Deal。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的机率。如果严格按照上述的条件,那么答案是会。不换门的话,赢得汽车的几率是1/3。换门的话,赢得汽车的几率是2/3。

以上的说法可能不是很严谨哈,下面给出更为严谨的陈述:

  • 现在有三扇门,只有一扇门有汽车,其余两扇门的都是山羊。

  • 汽车事前是等可能地被放置于三扇门的其中一扇后面。

  • 参赛者在三扇门中挑选一扇。他在挑选前并不知道任意一扇门后面是什麽。

  • 主持人知道每扇门后面有什么。

  • 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。

  • 如果参赛者挑了一扇有汽车的门,主持人等可能地在另外两扇有山羊的门中挑一扇门。

  • 参赛者会被问是否保持他的原来选择࿰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值