题目大意: 一个0 1字符串,要你全部变成0;变的规则是变第n个的时候第n-1个必须为1,n-1之前的全部为0,n>=3;第1个可以随便变,第2个必须在第1个为1的情况下改变,求最小改变多少次可以让给定0 1字符串全部变成0
首先个人对这类题目感想:一看数据和结果那么大,搜索肯定不行,那么就应该是规律公式题了,联想到了汉若塔,先找公式;z[n]函数表示
对于0 0 0 ……0的第n个数变成1,x[n]表示对于0 0 0 ……1 0的第n个数(1)变成0
那么有z[n]=z[n-1]+1+x[n-1]; ……1
x[n]=z[n-1]+1+x[n-1]; ……2
由1,2推出z[n]=2^n-1;x[n]=2^n-1;
一个for循环就可以找到答案ans,存的是二进制,题目主要难度就在二进制转化到十进制的时间上 因为感觉自己思路是对的,但老师超时,很气愤得就一直乱改代码,完全自己的思路瞎搬,所以代码质量很不好,具体思路见注释,不喜勿喷,哈哈 #include<stdio.h> #include<string.h> int array[1001]; int res[1001],ans[1001];//ans存二进制,由ans转化成的十进制存在res中 int ini() { int z,flag=0; for(z=1;z<=1000;z++) { res[z]+=flag; flag=res[z]/10; res[z]%=10; } return 0; } int add(int* flag,int fnum) { int i; for(i=1;i<=fnum;i++) res[i]+=flag[i]; return ini(); } int getres(int n) { int i,j,z,flag[1001],ff,fnum=1; memset(flag,0,sizeof(flag)); flag[1]=1; for(i=1;i<=n;i++) { if(ans[i]) add(flag,fnum); for(j=1;j<=fnum;j++) { flag[j]*=2; } ff=0; for(z=1;z<=fnum;z++) { flag[z]+=ff; ff=flag[z]/10; flag[z]%=10; } while(ff!=0) { flag[++fnum]=ff%10; ff/=10; } } return 0; } int main() { int i; int n,flag[1001],xx; while(scanf("%d",&n)!=EOF) { memset(flag,0,sizeof(flag));//开始时目标状态全为0; memset(res,0,sizeof(res));//十进制答案初始化 memset(ans,0,sizeof(ans));//二进制答案初始化 for(i=1;i<=n;i++) scanf("%d",&array[i]); for(i=n;i>=1;i--)//贪心从后往前,比如解决第四个不一样的问题就必须把前三个状态换成0 0 1 { if(flag[i]==array[i])//如果一样就不需要转化; continue; flag[i-1]=1;//如果不一样,那么就需要把前面的转化成0 0 0……1 之后加上一步把第i变成一样,然后加上前n-1个(0 0 0……1)变成全0,经本人推出公式是2^n-1,那么刚好对应二进制里面第n+1位为1了; ans[i]=1; } //二进制算出来了,后面的就是转化问题了,一个地方需要注意,也没什么好讲的了 getres(n); xx=0; for(i=1000;i>=1;i--) { if(xx==0&&res[i]==0) continue; xx=1; printf("%d",res[i]); } if(xx==0) printf("0"); printf("\n"); } return 0; }