链接: link.
题意:
输入一个n表示n个数,然后输入n个数,输入m表示m个操作,有2种操作:
1、0 x y 表示x到y这个区间到数都开根号
2、1 x y 求出x到y区间和
思路:
毫无疑问利用线段树求区间和,但是每次都把一个区间的每个数都开根号就会超时,我们知道一个数一直开根号,到最后一定变为1,所以我们同时记录一下一个区间内的最大值,如果这个区间的最大值是1,那么就不用给这个区间的数开根号,就不用继续往下找,降低时间复杂度。
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <map>
#include <queue>
#include <vector>
#define ll long long
#define T int T;scanf("%d", &T);while(T--)
#define inf 0x7f7f7f7f
using namespace std;
const int maxn = 1000100;
struct node{
ll val1,val2; //val1记录区间最大值,val2记录区间和
int l,r;
ll add;
}tree[maxn<<2];
ll a[maxn];
int n,m;
void pushup(int index){
tree[index].val1 = max(tree[index*2].val1,tree[index*2+1].val1);
tree[index].val2 = tree[index*2].val2+tree[index*2+1].val2;
}
void build(int l,int r,int index){
tree[index].add = 0;
tree[index].l = l;
tree[index].r = r;
if(l==r){
scanf("%lld", &tree[index].val1);
tree[index].val2 = tree[index].val1;
return;
}
int mid = (l+r)/2;
build(l,mid,index*2);
build(mid+1,r,index*2+1);
pushup(index);
}
void update1(int l,int r,int index){
if(tree[index].val1<=1) return; //剪枝,如果区间内最大值是1,这个区间不用更新
if(tree[index].l==tree[index].r){
tree[index].val2 = sqrt(tree[index].val2); //开根号
tree[index].val1 = tree[index].val2; //更新最大值
return;
}
// pushdown(index);
int mid = (tree[index].l+tree[index].r)/2;
if(l<=mid) update1(l,r,index*2); //递归左区间
if(mid<r) update1(l,r,index*2+1); //递归右区间
pushup(index);
}
ll query2(int l,int r,int index){ //查询区间和
if(l<=tree[index].l && tree[index].r<=r){
return tree[index].val2;
}
// pushdown(index);
ll ans = 0;
int mid = (tree[index].l+tree[index].r)/2;
if(l<=mid) ans+=query2(l,r,index*2);
if(mid<r) ans+=query2(l,r,index*2+1);
return ans;
}
int main(){
int tt = 1;
int x,y,z;
while(~scanf("%d", &n)){
build(1,n,1);
scanf("%d", &m);
printf("Case #%d:\n",tt++);
while(m--){
scanf("%d %d %d", &z, &x, &y);
if(x>y) swap(x,y);
if(z==1){
printf("%lld\n", query2(x,y,1));
}else{
update1(x,y,1);
}
}
printf("\n");
}
return 0;
}